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15.1.4 Becker–Döring Analysis 183

15.1.5 Nucleation Rate 187

15.1.6 Limitations of the Becker–Döring Analysis 188
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Preface

This book is based on a course on Kinetic Processes which I taught for several years in
the Materials Science Department at the University of Arizona. This is a required
course for first year graduate students, although some of the material contained in
the book would be suitable for a lower level course. The course initially derived
from a series of lectures which I gave at Bell Labs, augmented by course notes
from a similarly titled course at MIT. The content of the book has a highly personal
flavor, emphasizing those areas to which I have made scientific contributions. I have
concentrated on developing an understanding of kinetic processes, especially those
involved in crystal growth, which is, perhaps, the simplest form of a first order trans-
formation. The book assumes a basic understanding of thermodynamics, which un-
derlies all kinetic processes and can be used to predict transformation kinetics for
simple cases. The understanding of the complexities of crystal growth has developed
significantly over the past several decades, but it is a wonderfully complex process, with
still much to be learned. I have tried to present a coherent account of these processes,
based on my view of the subject, which is available at present only in a dispersed form
in the published literature, but it has not been assembled and coordinated as I have
attempted to do here.
The book concentrates on atomic level processes and on how these processes trans-

late into themicroscopic andmacroscopic descriptions of kinetic processes. It is aimed
at a level appropriate for practitioners of materials processing. I have kept the mathe-
matics at the minimum level necessary to expose the underlying physics. Many of my
mathematically inclined friends will cringe at the simplified treatments which I pre-
sent, but nevertheless, I suspect that non-mathematically inclined students will strug-
gle with them. My colleagues in the crystal growth community, on the other hand, will
cringe at my over-simplified descriptions of how single crystals and thin films, the
basic materials for high-tech devices, are produced.
There are two streams of context in this book. One concentrates on basic kinetic

processes, and the other on modern applications, where these kinetic processes
are of critical importance. These two streams are interleaved. The book starts with
an introduction to the basis of classical kinetics, the Boltzmann distribution. The fol-
lowing four chapters deal with diffusion processes in fluids, in amorphous materials,
in simple crystals, and in semiconductors. This is followed by Chapter 6, on ion im-
plantation, the important method for doping semiconductors, and includes a discus-
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sion of Rutherford backscattering. The next chapter introduces the diffusion equation,
and some standard solutions. Chapter 8 deals with Stefan problems which are moving
boundary problems encountered in phase transformations. Chapter 9 contains a gen-
eral description of the kinetic processes involved in phase transformations, and is
followed by Chapter 10 which contains a brief description of the methods used for
growing single crystals. This is not intended to teach anyone how to grow crystals:
there are individual books on several of these methods. Chapter 11 describes segrega-
tion at a moving interface, and is followed by Chapter 12, on the interface instabilities
which can result from this segregation. These instabilities are described by non-linear
equations which have been studied extensively, but are far beyond the scope of this
book. Chapter 13 outlines some aspects of chemical kinetic theory, and is followed
Chapter 14 on the formal aspects of phase transformations. Chapter 15 treats the in-
itial formation of a new phase by a nucleation process. The next few chapters are on
atomic processes at surfaces. Chapter 16 outlines adsorption, surface nucleation and
epitaxial growth. This treatment only scratches the surface of the knowledge which has
been accumulated by surface scientists. Chapter 17 discusses methods for the deposi-
tion of thin films, and Chapter 18 is on plasmas, which are used for both deposition
and etching. Chapter 19 discusses rapid thermal processing, which is used to control
and fine tune thermal annealing. The next few chapters return to fundamental con-
siderations. Chapter 20 discusses the kinetics of first order phase transformations, and
the following chapter discusses the important role of the surface roughening transition
in these processes. The final chapters are on kinetic processes in alloys. Chapter 22 is
on equilibrium in alloys and on growth processes in alloys near equilibrium. It is
followed by a discussion, in Chapter 23, of phase separation, also known as spinodal
decomposition. Chapter 24 is on rapid phase transformations, where kinetic processes
modify the usual equilibrium segregation; where the rate of motion of the interface is
comparable the rate of diffusive motion of the atoms. Chapter 25 contains a brief
account of coarsening, sintering and grain growth, which applies not only to al-
loys. Again, much more is known about these processes than could be included
here. Chapter 26 presents a discussion of dendritic growth, including a simple math-
ematical model. This growth mode is an extreme version of interfacial instabilities as
discussed in Chapter 12, and has been the focus of extensive mathematical modeling,
including the development of the phase field method. Chapter 27 discusses the for-
mation of a two phase solid from a single phase liquid. The final chapter, 28, discusses
an important aspect of the formation of the grain structure inmetal castings. It is by no
means an introduction to the computer models of segregation and fluid flow which are
used to design castings today.
Most of what I know about this subject I have learned from my colleagues over the

years. I would like to take this opportunity express the enjoyment I have experienced
working with them, especially John Hunt and George Gilmer, without whose contri-
butions this book would be a lot thinner. Colleagues at Bell Labs, including Harry
Leamy, Kim Kimerling, John Weeks, Rudy Voorhoeve, Ho-Sou Chen, Bill Pfann, Ri-
chardWagner, Bob Batterman, Jim Patel, JohnHegarty, Kurt Nassau, Chuck Kurkjian,
Ben Greene, Ray Wolfe, Ken Benson, Dennis Maher, David Joy, Helen Farrell, George
Peterson, Walter Brown, Charlie Miller, Reggie Farrow, ... , (the list is endless) have all
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been involved in my education. I began my interest in this area under the tutelage of
Bruce Chalmers, and I owe much to fellow students Bill Tiller, Dick Davis, Don Uhl-
mann, Jacques Hauser, Bob Fliescher, and Jim Livingston, as well as to discussions
with leaders in the field, David Turnbull and Charles Frank. My other great source of
inspiration has been my colleagues in the field of crystal growth, Bob Sekerka, Bob
Laudise, Franz Rosenberger, John Wilkes, Alex Chernov, Dave Brandle, Vince Fratel-
lo, Joe Wenkus, Don Hurle, Brian Mullen, ... (another endless list). I would also like to
acknowledge the direct and indirect contributions of my graduate students at the Uni-
versity of Arizona, Kirk Beatty, Don Hilliard, Katherine Gudgel, Mollie Minke, and
Dan Bentz.
I would like to express my appreciation of the extensive and important contributions

in the areas of crystal growth, phase transformations andmaterials processing, includ-
ing some of my efforts, which have been made possible by the sponsorship of NASA.
I would like to thank Russell Linney for a critical reading of the manuscript, and

Harry Sarkas, Franz Rosenberger, and Joe Simmons, as well as many of those men-
tioned above, for encouragement on this project.
This book would not have been possible without the continued support and under-

standing of a very special person, Gina Kritchevsky.

Kenneth A. Jackson,
Prescott, Arizona
June 26, 2004
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Chapter 1

Introduction

The aim of this book is to provide an understanding of the basic processes, at the
atomic or molecular level, which are responsible for kinetic processes at the micro-
scopic and macroscopic levels.

Many of the rate processes dealt with in this book are classical rate processes de-
scribed by Boltzmann statistics. That is, the rate at which a process occurs is given by
an expression of the form:

R ¼ R0 expð�Q=kTÞ ð1:1Þ

The exponential term is known as Boltzmann factor, k is Boltzmann’s constant and Q
is called the activation energy. The Boltzmann factor gives the fraction of atoms or
molecules in the system that have an energy greater than Q at the temperature T.
So the rate at which the process occurs depends on a prefactor, R0, which depends
on geometric details of the path, the atom density, etc., times the number of atoms
that have enough energy to traverse the path.

1.1

Arrhenius Plot

Taking the logarithm of both sides of Eq. 1.1:

ln R ¼ ln R0 � Q=kT ð1:2Þ

Plotting ln R vs 1/T gives a straight line with slope –Q/k, as illustrated in Fig. 1.1. This
kind of plot is known as an Arrhenius plot.

If the rate process has a single activation energy, Q, over the range of the measure-
ment, this suggests strongly that the mechanism controlling the rate is the same over
that range. If the slope changes, or if the curve is discontinuous, the mechanism con-
trolling the rate has changed.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3
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1.2

The Relationship between Kinetics and Thermodynamics

There is a simple relationship between the rate equation above and thermodynamics,
which can be written:

G ¼ �kT ln R ¼ Q� kT ln R0 ð1:3Þ

This implies that the rate at which atoms leave a state depends on their properties in
that state. Comparing Eq. 1.3 with G = H–TS, it is evident that Q is related to the
enthalpy, and the entropy, S, is klnR0. If two states or phases are in equilibrium, their
free energies are equal, which is equivalent to the statement that rates of transition
back and forth between the two states are the same.

The relationship between thermodynamics and kinetics will be a recurring theme in
this book. The thermodynamics formalism was developed during the last century
based on the understanding of steam engines. If it were being developed today by
materials scientists, it would be done in terms of rate equations, which are formally
equivalent, but much more amenable to physical interpretation.

The origin of the Boltzmann factor will be outlined below, but first, we will attempt
to answer the question:

What is temperature?

We all know what temperature is: it is something that we measure with a thermo-
meter. The temperature scales that we use are defined based on fixed tempera-
tures, such as the melting point of ice and the boiling point of water. We use the
thermal expansion of some material to interpolate between these fixed points. But
what is the physical meaning of temperature? What is being measured with this em-
pirical system?

The simplest thermometer to understand is based on an ideal gas, where we can
relate the temperature to the pressure of a gas in a container of fixed volume. The
pressure on a wall or a piston derives from the force exerted on it by atoms or mo-

Figure 1.1 Arrhenius

plot.
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lecules striking it. The pressure is due to the change of momentum of the atoms or
molecules that hit the piston. The force, F, on the piston is the change in momentum
per second of the atoms or molecules striking it.

So we can write:
F = (change in momentum per molecule)� (number of molecules per second strik-

ing the piston)
If vx is the component of the velocity of a molecule in the x direction, then the change

in momentum when the molecule makes an elastic collision (an elastic collision is one
in which the molecule does not lose any energy) with the piston is 2mvx, since the
momentum of the incident molecule is reversed during the collision.

As illustrated in Fig. 1.2, only the molecules within a distance vxt of the wall will
strike it during time t, so the number of molecules hitting the wall per second is given
by the number of molecules per unit volume, n, times the area of the piston, A, times
vx/2, since half of the molecules are going the other way. The force on the piston is
thus:

F ¼ ð2mvxÞ
1

2
nvxA

� �
ð1:4Þ

And the pressure on the piston is:

P ¼ F

A
¼ nmv2

x ð1:5Þ

Writing n = N/V, and using the ideal gas law, we can write:

PV ¼ Nmv2
x ¼ NkT ð1:6Þ

This indicates that the thermal energy of an atom, kT, is just the kinetic energy of the
atom. A more refined analysis relating the pressure to the motion of atoms in three
dimensions gives:

kT ¼ 1

3
mv2

rms ¼
1

2
mv2 ð1:7Þ

where vrms is the root mean square average velocity of the atoms, and v is the most
probable velocity.

A familiar form of the ideal gas law uses the gas constant R, rather than Boltzmann’s
constant, k. The two are related by R = N0k, where N0 is Avagadro’s number, which is
the number of molecules in a mol. RT is the average thermal energy of a mol of atoms,
kT is the average thermal energy of one atom.

Figure 1.2 The change in momentum of the

molecules striking a piston creates pressure on

the piston.
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Gas constant: R =1.98 cal/mol.deg
= 0.00198 kcal/mol.deg
= 8.31 J/mol.deg
= 8.31 � 107 ergs/mol.deg

Boltzmann’s constant: k = 8.621 � 10�5 eV/atom.deg.
= 1.38 � 10�16 ergs/atom.deg.
= 1.38 � 10�23 J/atom.deg.

1eV=atom ¼ 23kcal=mol

R

k
¼ 8:31� 107

1:38� 10�16
¼ 6:023� 1023 molecules=mol ¼ Avagadro’s number

The important point from the above discussion is that the temperature is a measure of
the average kinetic energy of the molecules. Not the total energy, which includes po-
tential energy and rotational energy, just the kinetic energy. Temperature is a measure
of how fast the atoms or molecules are moving, on average.

1.3

The Boltzmann Distribution

Where does N ¼ N0 expð�E=kTÞ come from?
We saw above that kT is a measure of the average kinetic energy of the atoms or

molecules in an assembly. The Boltzmann function gives the fraction of atoms that
have enough energy to surmount an energy barrier of height E, in an assembly of
atoms with an average energy kT.

Let us look at an atom in a potential field. Gravity is a simple one.
The force of gravity on an atom is:

F ¼ mg ð1:8Þ

The associated gravitational potential is:

Zh

0

Fdx ¼ mgh ð1:9Þ

which is the energy required lift an atom from height 0 to height h in gravity. mgh is
the potential energy of an atom at height h.

For N atoms in a volume V at temperature T, the ideal gas law says:

PV ¼ NRT ð1:10Þ

or

P ¼ nkT ð1:11Þ

where n = N/V, the number of atoms per unit volume.

1 Introduction4



The change in pressure, dP, which will result from a change in atom density, dn, is

dP ¼ kTdn ð1:12Þ

In a gravitational field, the number of atoms per unit volume decreases with height,
and ndh is the number of atoms between heights h and h+dh.

The change in pressure between h and h+dh due to the weight of the atoms in dh is:

dP ¼ Phþdh � Ph ¼ �mgndh ð1:13Þ

Combining Eqs. 1.12 and 1.13 gives:

dn

n
¼ �mg

kT
dh ð1:14Þ

or:

n ¼ n0 exp �mgh

kT

� �
ð1:15Þ

which is the variation of atom density with height in the atmosphere due to the earth’s
gravitational field.

mgh is the potential energy of an atom at height h. This analysis is similar for a
generalized force field, and the distribution of the atoms in the force field has the
same form:

n ¼ n0 exp �P:E:

kT

� �
ð1:16Þ

where P.E. is the potential energy of the atoms in the force field.
The kinetic energy distribution of the atoms can be derived by examining the kinetic

energy that an atom at height zero needs to reach a height h (ignoring scattering).
In order to reach a height h, an atom must have an upwards kinetic energy equal to

or greater than the potential energy at height h. It must have an upwards velocity
greater than u, given by:

1

2
mu2 � mgh ð1:17Þ

Figure 1.3 An atom with enough kinetic energy at height 0

can reach height h.
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With a velocity less than u, the atom will not get to height h. In Fig. 1.3, the number of
atoms passing through the plane at h is the number moving upwards at height zero
with velocity greater than u, so

nv>0ðhÞ ¼ nv>uð0Þ ð1:18Þ

Assuming that the temperature is the same at zero and at h, the distribution of velo-
cities will be the same, and the only difference will be the density of atoms, so:

nv>uð0Þ
nv>0ð0Þ

¼ exp �mgh

kT

� �
¼ exp �mu2

2kT

� �
ð1:19Þ

or

nv>u ¼ n0 exp �K:E:

kT

� �
ð1:20Þ

where K.E. is the kinetic energy of the atom. This is the Boltzmann distribution of
velocities. It says that the fraction of atoms with velocity (or kinetic energy) greater
than some value is given by a Boltzmann factor with the average kinetic energy of
the atoms in the denominator of the exponent.

Recalling that kT is the average kinetic energy of the atoms, the exponent is just the
ratio of two kinetic energies. The Boltzmann factor describes the spread in the dis-
tribution of energies of the atoms. Given an average kinetic energy kT per atom,
the Boltzmann factor tells us how many of the atoms have an energy greater than
a specific value.

In general, if there is a potential energy barrier of height Q, the Boltzmann factor
says that a fraction of the atoms given by exp(–Q/kT) will have enough kinetic energy to
get over the barrier. This is independent of how the potential varies along the path. The
atoms just have to have enough kinetic energy at the start to surpass the barrier. So, in
general, if there is a potential barrier along a path, the atoms that are going in the right
direction take a run at it, and those atoms that are going fast enough will make it over
the barrier. And the fraction of the atoms that will make it over the barrier is given by a
Boltzmann factor.

The original derivation of Boltzmann was concerned with atomic collisions between
gas atoms, and the distribution of velocities and the spread in energy that the collisions
produce. This is a very complex problem, but the result is remarkably simple. We have
derived it crudely from Newton’s laws and our practical definition of temperature,
which is based on the ideal gas law.

1.4

Kinetic Theory of Gases

From statistics based on Newton’s laws, Boltzmann derived that the probability P(v)
that an atom of mass m will have a velocity v at a temperature T is given by:
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PðvÞ ¼ 4p
m

2pkT

� �3=2
v2 exp �mv2

2kT

� �
ð1:21Þ

where k is Boltzmann’s constant. This distribution is illustrated in Fig. 1.4.
The average velocity is given by:

v ¼
Z1

0

vPðvÞdv ¼
ffiffiffiffiffiffiffiffi
8kT

pm

r
ð1:22Þ

On average, the velocity of an atom in any one direction is vx ¼ vy ¼ vz ¼
ffiffiffiffiffiffiffiffi
2kT

pm

r
.

The root mean square velocity is slightly larger than the average velocity, and is given

by vrms ¼
ffiffiffiffiffiffiffiffi
3kT

m

r
. kT is a measure of the average kinetic energy of the atoms in the

gas. This is also true in liquids and solids. At room temperature, vx is about
480 ms�1, or about 1060 mph.

1.5

Collisions

Two atoms of diameter d will collide if their centers pass within d of each other. We can
imagine a cylinder with a diameter 2d, twice the diameter of an atom. The length of
the cylinder, l, is such that the volume of the cylinder is the average volume per atom in
the gas, 1/n, where n is the number of atoms per unit volume in the gas. We then have:
lpd2 ¼ 1=n. When an atom traverses a distance l, it is likely to collide with another
atom. The average distance between collisions is thus given approximately by l, which
is equal to 1=pd2n. A rigorous treatment for the average distance between collisions in
a gas, which is known as the mean free path, k, gives:

Figure 1.4 Typical velocity distribution, P(v),

of atoms in a gas at room temperature.
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k ¼ 1ffiffiffi
2
p

pd2n
ð1:23Þ

For an ideal gas, n = P/kT, where P is the pressure, so that the mean free path can be
written:

k ¼ kTffiffiffi
2
p

pd2P
ð1:24Þ

The diffusion coefficient (which will discussed in more detail in the next chapter) is
given by:

D ¼ vk

3
ð1:25Þ

The viscosity of a gas is given by:

g ¼ mnvk

3
ð1:26Þ

The thermal conductivity of a gas is given by the specific heat times the diffusion
coefficient:

K ¼ Cvvk

3
ð1:27Þ

where CV is the specific heat of the gas at constant volume. A surprising result is
obtained by inserting the value of the mean free path, Eq. 1.23, into Eq. 1.26 for
the viscosity: the viscosity is independent of the pressure of the gas at a given tem-
perature.

The flux of atoms through unit area in unit time is given by:

J ¼ nvx

2
¼ n

ffiffiffiffiffiffiffiffiffiffi
kT

2pm

r
¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkT
p ð1:28Þ

which is an expression we will use later for the flux of gas atoms to a surface. For one
atmosphere pressure of nitrogen gas at room temperature, the flux is about 6�1023

atoms/cm2 s.

Further Reading

The definition of temperature and the derivation of the Boltzmann function are taken
from:

R. P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. 1,
Addison-Wesley, Reading, MA, 1963, Ch. 40.

K. Huang, Statistical Mechanics, Wiley, New York, NY, 1963.
C. H. P. Lupis, Chemical Thermodynamics of Materials, North-Holland, New York,

NY, 1983.
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Problems

1. The specific heat of a monatomic gas is 3Nk. What are the thermal conductivities
of helium and argon at room temperature?

2. How many atoms of argon at a pressure of one atmosphere are incident on a
square centimeter of surface at room temperature in one microsecond?
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Chapter 2

Diffusion in Fluids

2.1

Diffusion in a Gas

Diffusion describes the motion of atoms, so let us examine the net flux of atoms,
J, across a plane in space.

In Fig. 2.1, the density of gas atoms to the left of the plane is n�, and the density to
the right is n+. The average velocity of the atoms crossing a plane perpendicular to the
x-axis is vx. Denoting the average distance that an atom travels between collisions,
which is known as the mean free path, to be k, and denoting the average time between
collisions, which is called the mean free time, to be s, then the average velocity, vx, is
given by:

vx ¼ k=s ð2:1Þ

The number of atoms crossing the plane from left to right in time Dt is one half of the
number within a distance vx Dt of the boundary, and similarly from right to left. And so
the net flux is:

Jx ¼
1

2
n�vx�t� 1

2
nþvx�t

�t
¼ n� � nþ

2

� �
vx ð2:2Þ

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2.1 Flux of atoms across a plane.
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The densities of atoms on the two sides of the plane, n� and n+, should be taken as the
densities within a mean free path of the plane, and the difference between these two
densities can be written in terms of the gradient in the density of atoms:

nþ � n� ¼ dn

dx
�x ¼ dn

dx
2k ð2:3Þ

where the densities are taken to be within a distance k of each side of the plane.
The net flux can then be written:

J ¼ �vxk
dn

dx
¼ � 1

3
vk

dn

dx
ð2:4Þ

where v is the average velocity in three dimensions. Comparing this equation with
Fick’s first law, which is an empirical equation describing the diffusion flux in a con-
centration gradient in terms of the diffusion coefficient, D:

J ¼ �D
dn

dx
ð2:5Þ

results in a diffusion coefficient given by:

D ¼ 1

3
kv ð2:6Þ

The expression for the average velocity of the atoms in a gas, Eq. 1.22, and for the mean
free path, k, Eq. 1.23 can be substituted into this equation to express the diffusion
coefficient in terms of the gas pressure, atom density, and so on. Since the average
velocity of an atom is proportional to

ffiffiffiffiffiffiffiffiffiffi
1=m

p
, Eq. 2.6 indicates that light atoms will

diffuse much more rapidly than heavy ones. Since heat is carried by the diffusive
motion of the atoms in a gas, the thermal conductivity of a gas is also much larger
for gases that are composed of light atoms.

It is worth noting that gases can move very quickly by flow or convection, and this is
usually much faster than diffusion.

2.2

Diffusion in Liquids

Diffusion in a liquid is similar to that in a gas, but different. The atoms are also ran-
domly distributed, but they are much closer together. As a result, the collisions are
much more complicated many-body interactions, rather than simple two-body colli-
sions. These complex collisions are amenable to computer simulation, but not to math-
ematical analysis. The atoms or molecules in a liquid are surrounded by other atoms or
molecules, which form a cage. An atom or molecule moves within its cage, at thermal
velocities, and many of the properties of the liquid can be described by the atom or
molecule bumping off its neighbors in its cage. This process is dominated by the
repulsive part of the atomic potential. For diffusion, however, the cage must move.
And this motion will depend on the differences in momenta and velocity between

2 Diffusion in Fluids12



an atom and the other atoms or molecules with which it collides. The net motion
produced by each collision, which is a diffusion step, K, depends on the spread of
velocities. So the diffusion coefficient in the liquid has an Arrhenius dependence
on temperature, whereas the mean free path is relatively independent of temperature.

If we estimate the distance in a liquid that an atom can move before it bumps into
another atom, its mean free path, k, to be about 3�10-11m, which is about 1/10 of an
atomic diameter, and assume that the atom is moving at the thermal velocity,

v � 1000 m s�1, then the time between collisions, s ¼ k

v
3� 10�14 s. The atom posi-

tion moves an average distance � � 3� 10�11 m with each collision, so the diffusion
coefficient, D, which is given by the square of this distance, divided by the time be-
tween collisions:

D ¼ 1

6

�2

s
¼ 1

6

�2v

k
� 5� 10�9 m2=s ð2:7Þ

There is a factor of 1/6 because the diffusion step can be in any direction. This value of
the diffusion coefficient is about the right value for many liquids. As pointed out
above, the distance � depends on the spread in velocities of the atoms, and so it in-
creases with temperature.

2.2.1

Diffusion Distances

The distance over which diffusion occurs in time t is given approximately by
ffiffiffiffiffi
Dt
p

.
For a liquid diffusion coefficient of 10�8 m2s�1, diffusion will occur over a distance of

one micrometer in about 200 ls. Diffusion over a distance of 10 cm will take approxi-
mately 2 million seconds, or 23 days. That is why you should stir your coffee, rather
than waiting for the sugar to diffuse throughout the cup.

Liquids can move rapidly by convection and flow.

2.2.2

Molecular Dynamics Simulations of Diffusion in Liquids

Modeling the properties of a liquid is much more complex than modeling the proper-
ties of a gas. In a gas, the atoms or molecules are separated in space. The collisions that
occur are predominantly between two atoms or molecules. Other atoms or molecules
in the gas have little effect on the collision, and so each collision can be treated se-
parately, using Newton’s laws, and then averages can be taken to obtain the velocity
distributions on which the properties depend. This is a fairly complex mathematical
problem, which was solved by Boltzmann.

In a liquid, the atoms or molecules are so close to each other that the potential field
from one atom or molecule can be felt by many atoms in its vicinity. These many-body
collisions are difficult to treat analytically, and this makes it very difficult to derive
velocity distributions for a liquid atom. So the properties of liquids that depend on
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these velocity distributions cannot be determined analytically. But they are amenable
to computer simulation; they can be determined readily using molecular dynamics
(MD) computer simulations. The development of our understanding of the properties
of liquids has relied heavily on MD computer simulations.

Molecular dynamics computer simulations are very simple in principle. The simu-
lations start with a collection of atoms in the computer, each with a specific position
and velocity. The subsequent position and velocity of each of the atoms is calculated in
a series of small time steps, taking into account all the interactions with other atoms.
The atoms do not move very far between the time steps.

The interactions between the atoms are calculated as follows. The atoms exert forces
on each other, which are obtained from an assumed interatomic potential. The sim-
plest of these is the Lennard-Jones potential [1]:

V ¼ a

r12
� b

r6
ð2:8Þ

Here a and b are constants, and r is the distance between the two atoms. The first term
is a repulsive term, which increases the potential energy rapidly if the atoms get too
close together. The second term is an attractive term that decreases the potential en-
ergy when the atoms approach each other from far away. The potential V has a mini-
mum at some distance, r0, which will be approximately the equilibrium separation
between the atoms. The depth of the minimum is the energy gained when the atoms
come together, that is, the binding energy between the atoms, E0. The constants a and
b can be readily expressed in terms of r0 and E0. The force between any two atoms is
given by the derivative of the potential energy with respect to r. This gives the force
between any two atoms at any given separation, r. The force is repulsive for r<r0, and
attractive for r>r0. For the Lennard-Jones potential, the magnitude of the force de-
pends on the constants a and b, or equivalently, on r0 and E0.

The initial position of each atom in an MD simulation is known, and so the total net
force exerted on any one atom by all its neighbors can be calculated from the positions.
From the total net force, the acceleration of the atom is calculated using Newton’s
second law. This is then used to calculate the new velocity of the atom a time step
later. The new position of the atom a time step later is calculated from its old positions
and its velocity.

The MD simulation consists of doing this over and over for each of the atoms in the
system. The number of atoms in the simulation and the total time of the simulation are
limited by the size of the computer and the patience of the simulator, usually tens of
thousands of atoms for times of less than a nanosecond.

So the simulation is very simple in principle. It just depends on having a force law
for the interactions between the atoms, and then solving Newton’s equation over and
over. But this type of simulation reproduces the behavior of materials very well. For
example, the Lennard-Jones potential describes the behavior of argon very well, and
also does a reasonable job for most metals. At high temperatures, the atoms behave
like gas atoms. At lower temperatures, they condense to a liquid configuration in the
simulations, and at a still lower temperature they crystallize to a face centered cubic
structure. And many of the other properties, such as the specific heat, sound velocity,
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diffusion coefficient, etc., of the liquid and solid are faithfully reproduced. This de-
monstrates that the behavior of the atoms in the real world depends on simple inter-
actions between the atoms.

The simulations for silicon are done using the Stillinger–Weber potential [2], which
is a three-body potential. That is, the interactions between the atoms depend on both
the distance between the atoms and the angle between the neighboring atoms. With
this potential the atoms crystallize in the diamond cubic structure at low temperatures.
The Stillinger–Weber potential was devised to simulate the properties of silicon.

Figure 2.2 is a plot of the logarithm of the diffusion coefficient in liquid argon and in
liquid silicon, plotted against TM/T, the melting point divided by the temperature.
These data were obtained from molecular dynamics simulations, using the Len-
nard-Jones potential for argon, and the Stillinger–Weber potential for silicon. The
figure suggests that the liquid behavior is similar for both potentials. Indeed, the struc-
ture and properties of liquids depends much more on the repulsive part of the poten-
tial than the attractive part. The liquid atoms tend to jostle around with more or less the
thermal velocity until they bump into one another.

The diffusion coefficients in Fig. 2.2 can be described by the equation:

D ¼ D0 expð�Q=kTÞ ð2:9Þ

where the temperature dependence derives from the temperature dependence of the
mean displacement distance, �, in Eq. 2.7. The slope of the line on the plot gives the
activation energy, Q. The two diffusion coefficients have the same slope when plotted
against TM/T, which indicates that the activation energy is proportional to the melting
point. Both sets of data were taken in the vicinity of the melting points of the respective
materials. The structures of the two liquids are similar and this result suggests that the

Figure 2.2 Diffusion coeffi-

cients from MD simulations for

liquid argon using the Lennard

Jones potential, and for liquid

silicon using the Stillin-

ger–Weber potential.
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spread in thermal velocities, which gives rise to the temperature dependence of �,
depends similarly on temperature for the two materials.

In Eq. 2.7 the diffusion coefficient is proportional to the average thermal velocity of
the atoms, v, which is proportional to

ffiffiffiffiffiffi
kT
p

. The data in the figure superimpose if the
diffusion coefficients are divided by

ffiffiffiffiffiffiffi
TM

p
.

These molecular dynamics data suggest that the simple relationships outlined in the
previous section for the relationship between diffusion coefficients and atomic velo-
cities provide a reasonable approximation.

2.2.3

Measurement of Diffusion Coefficients in Liquids

Experimental measurements of the diffusion coefficient, D, are made by preparing a
sample in an initial configuration for which a solution to the diffusion equation is
known, permitting diffusion to occur for some time, determining the final composi-
tion distribution by some chemical analysis method, and then fitting the measured
data with the formal solution, using D as the fitting parameter. Usually the measure-
ments are made for a variety of times to assure that a single value of D will fit all the
data. Measurements are made for a variety of temperatures in order to obtain the
temperature dependence of D.

A major problem with measuring the diffusion coefficient in liquids is convective
mixing, which can be much faster than diffusion, especially over long distances. Mea-
surements have been made in fine-bore capillary tubes, where convection should be
minimal.

The effects of convection can be minimized by keeping the more dense liquid at the
bottom of the container.

A clever experimental setup for measuring liquid diffusion coefficients is illustrated
in Fig. 2.3. The apparatus consists of a stack of discs that can be rotated about a com-
mon axis.

Figure 2.3 Apparatus for measuring liquid diffusion.
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The discs have off-axis holes that can be aligned. The holes in the top half of the discs
and the bottom half of the discs are aligned as shown in the initial configuration, and
the starting material is inserted. The holes are then aligned to permit interdiffusion.
The discs are then rotated as shown to provide separate samples for compositional
analysis.
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Problems

1. Write the equation for the Lennard-Jones potential in terms of r0 and E0.
2. Plot the Lennard-Jones potential for r0 = 3�10�10 m and E0 = 2 eV.
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Chapter 3

Diffusion in Amorphous Materials

3.1

Amorphous Materials

There are different classes of amorphous materials, and the diffusion process differs
in each.

Amorphous materials that are formed by quenching from a liquid are called glasses.
These are materials that can readily be cooled into a glassy state from the liquid be-
cause their molecular motion is so sluggish. They usually have relatively high viscos-
ities, and on cooling, it is possible to reach the glass transition temperature before
crystallization occurs. This is easier if the material is also difficult to crystallize. A
complex liquid structure, which increases the viscosity of the liquid, or a low melting
point, which delays crystallization, also assist in access to the glassy state. Very rapid
quenching is more likely to get a glass-forming material into a glassy state.

There are network glass-formers such as silica, and there are also molecular glass
formers, such as Salol and glycerol. There are also metallic glasses, which form from
liquid alloys on rapid cooling. These are alloys containing metals and metalloids. Some
of these have a strongly depressed melting point because of the alloying, but they all
have complex crystalline structures, so that crystallization is slow. It is believed that
most materials can be prepared as glasses by sufficiently rapid quenching. But there is
a notable exception: no pure metal has been prepared in an amorphous state.

Amorphous materials can also be formed by deposition onto cold substrates, or by
ion-implantation damage. Amorphous materials are usually not the lowest free energy
configuration, but their random arrangement persists because the atoms do not have
enough mobility to rearrange into a lower free energy crystalline array. For all practical
purposes, these materials are stable solids below their glass transition temperatures.

Many solid polymers are glasses. Regular polymers, such as polyethylene for exam-
ple, partially crystallize, and then the crystal size is usually extremely small. The glass
transition temperature of a polymeric material is a very important parameter in many
applications.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3
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3.2

Network Glass Formers

3.2.1

Silica

Silica (SiO2) and silicates are the most common materials in the earth’s crust. Silica is a
network glass-former. In amorphous silica, each silicon atom is surrounded by four
oxygen atoms. Each oxygen atom is between two silicon atoms. The arrangement of the
atoms is not regular as it is in quartz, which is a crystalline form of silica. This ar-
rangement satisfies the bonding requirements of the atoms involved, and the bonds
are quite strong. These bonds do not rearrange readily. As a result, the crystallization
rate of silica is so slow, see Fig. 8.1, that even relatively slow cooling of the liquid will
result in a glass. The glassy phase of silica has dangling bonds that promote diffusion.

Data for diffusion coefficients of various elements in silica are presented on an
Arrhenius plot in Fig. 3.1.

Atoms that occupy and move through the open spaces between the silicon and oxy-
gen atoms of the matrix are called interstitial atoms. They diffuse rapidly, and are at the
top of the chart. Substitutional atoms replace the silicon or oxygen atoms in network
matrix of the silica. These diffuse much more slowly, and are near the bottom of the
chart. The interstitial diffusers are mostly small atoms or ions, but many metals also
diffuse interstitially in silica, which has a relatively open structure. Others elements
disrupt the network structure of silica when they are introduced. They are known as
network modifiers, and they include OH or water, and alkali ions such as sodium.
Their diffusion coefficients increase with concentration, because higher concentra-
tions disrupt the lattice more. They also change the diffusion rates of other ele-
ments. For example, during the growth of a field oxide on silicon, which forms by
the diffusion of oxygen through the oxide layer to combine with silicon, introducing
water into the ambient significantly increases the diffusion rate of oxygen through the
silica layer.

Notice that silicon and oxygen diffuse at quite different rates in silica.

3.2.2

Silicon and Germanium

Both silicon and germanium can exist in three states: liquid, crystal, and amorphous.
The liquid is metallic, and each atom has about nine nearest neighbors. The crystal has
the diamond cubic structure, a rather open structure, in which each atom has four
nearest neighbors. The liquid is more dense than the crystal. The amorphous phase
is a randomized version of the crystal. It forms readily by vapor deposition onto any
substrate at a temperature below about 400 8C. On heating, the amorphous phase will
crystallize.

In the amorphous network structure, a single dangling bond, which is illustrated in
Fig. 3.2, can exist as a defect. These cannot exist in a crystalline silicon or germanium,
because removing a single atom creates a vacancy and four dangling bonds. The bonds
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Figure 3.1 Diffusion coefficients in silica.
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in the vacancy pair up, leaving no dangling bonds. Dangling bonds in amorphous
silicon are present at about one in a thousand concentration, so most of the atoms
are four-fold coordinated. But the dangling bonds are responsible for diffusion in
the amorphous phase, and also for rearranging the bond structure during crystalliza-
tion of the amorphous phase.

3.3

The Glass Transition

In a liquid, the atoms or molecules move around much more rapidly than in a crystal.
They are constantly in motion, jiggling around relative to each other, unlike in a crystal,
where the atoms are bound to specific lattice sites, around which each vibrates.

As a liquid is cooled, the space for the atoms to move around in decreases. A mea-
sure of this is the specific volume, which can be measured as the difference between
the density of the crystal and of the liquid. As a glass-forming material cools, this
excess volume decreases, and finally the density of the glass approaches that of the
crystal, as illustrated in Fig. 3.3.

On further cooling below the glass transition temperature, the atoms can no longer
jiggle around with respect to each other, and so the material becomes a solid. The
thermal expansion coefficient of the glass is similar to that of the crystalline phase
of the same material.

The standard definition of the glass transition temperature is where the viscosity
reaches a value of about 1013 poise. At this viscosity, the material is essentially so-
lid. In a glass, the diffusion process no longer depends on a lot of little jiggling mo-
tions, as in a liquid. Since the atoms are more or less locked in place, an atom must
make a jump that is comparable in length to an atomic diameter. Diffusion rates in a
glass are more like those in a crystal than in a liquid.

Figure 3.2 Dangling bond in a network amorphous

structure.
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3.4

The Free-Volume Model

The free-volume model for diffusion in amorphous materials was devised by Cohen
and Turnbull [1] for cases where the diffusion process takes place by an atom jumping
into an adjacent atom-size hole in the structure. The model assumes that the size
distribution of the spaces in an amorphous material is a Boltzmann distribution.
The probability of finding an atom-size open space is quite small, and so the diffusion
rate in amorphous materials is very slow.

3.5

Fictive Temperature

The density, viscosity, diffusion coefficient and other properties of a glass depend on
the thermal history of the sample [2]. On cooling and on annealing the structure of a
glass relaxes. It relaxes more quickly at a higher temperature, and the final structure
and even the specific volume depends on the temperature at which the relaxation takes
place. There is a hypothetical structure of a glass that has been quenched very rapidly to
some temperature and then held there for a long time to equilibrate. This is called the
fictive temperature.

In practice, the structure of a glass depends on how rapidly it was cooled through the
glass transition temperature, as well as the final temperature to which it was cooled. Its
specific volume depends on its thermal history, as illustrated in Fig. 3.3.

Figure 3.3 The specific volume in a liquid de-

creases more rapidly with temperature than the

crystal. The thermal expansion coefficient of glass is

similar to that of the crystal. The final specific vo-

lume of the glass depends on the cooling rate: a) fast

cooling, b) normal cooling, c) slow cooling.
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The faster the glass is cooled, the higher will be its fictive temperature, the lower its
density, the lower its viscosity and the larger its diffusion coefficient. Glass samples of
the same composition do not all have the same properties.

3.6

Diffusion in Polymers

Polymers are long chain molecules that can be crystalline or amorphous. In many
cases, they contain both crystalline and amorphous regions. The crystals in a crystal-
line polymer are usually small, micrometers or so, separated by amorphous regions.
Diffusion can occur either through the crystal structure or the interface between crys-
tals or the continuous amorphous region. The diffusion rate will generally be domi-
nated by the properties of the amorphous region because this lower density material
will generally allow faster diffusion.

The glass transition temperature and the crystalline melting temperature of most
polymers is in the region between –100 8C and +500 8C, which is the region of interest
for most material processing. The diffusion characteristics change significantly above
and below these transformation temperatures. In an amorphous polymer the volume
of the polymer increases with temperature relatively linearly until the glass transition
temperature is reached. Above the glass transition temperature, the volume increases
at a higher rate with increases in temperature. The diffusing molecules can occupy the
regions of excess free volume, so the diffusion rate increases with the increase in
volume.

In addition to being either amorphous or crystalline, polymers can be either cross-
linked (thermoset) or non-crosslinked (thermoplastic), or can act somewhat in be-
tween. In a semi-crystalline thermoplastic, the crystalline domains can act like cross-
links. Above the crystalline melting temperature, the material acts more like a ther-
moplastic. These characteristics of a polymer affect the viscoelastic properties of the
polymer. For example, a highly crosslinked polymer will be able to sustain elastic
deformation, but will not be able to sustain viscous flow. A thermoplastic, on the other
hand can exhibit viscous flow.

Diffusion through polymers depends on the similarity of the diffusing material and
the material that it is diffusing through. This similarity is quantified as the solubility
parameter, which is used to predict the solubility of a polymer in a solvent. For low
molecular weight materials, the solubility parameter is approximately the square root
of the molar enthalpy of vaporization. If the solubility parameters of the two materials
are similar, then the bulk polymer can absorb a large volume of the permeant. If the
solubility parameters of the two materials are very similar, the permeant can swell the
polymer network which increases the free volume and increases the ease of diffusion
through the polymer. For similar solubility parameters, the concentration of the per-
meant can be increased until the polymer dissolves.

The ease of diffusion of solvents or small molecules through a polymer depends on
the size of the molecule as well as on the similarity of the solubility parameter.
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Polymers are long chain molecules, and during the diffusion process the chains
cannot move through each other. The polymer molecules can rearrange only by slid-
ing along their lengths. This process is called “reptation” because it is like the motion
of a reptile. This process also depends on the free volume of the polymer. For low free
volume, only the polymer side chains can move. When the free volume is large enough
to allow crankshaft motion of adjacent units in the polymer backbone, the polymer
chains can rearrange much more rapidly. Reptation is slow compared to the diffusion
of permeants through the polymer.

3.7

The Stokes–Einstein Relationship

Stokes studied the motion of a sphere through a viscous medium, and determined
how the force required to move a sphere through a fluid at a velocity v depended
on its diameter and on the viscosity of the medium. Einstein [3] postulated that
this relationship should hold for an atom or molecule (a very small sphere) moving
through a viscous medium, in which case the diffusion coefficient is related to the
viscosity:

D ¼ kT

3pga
ð3:1Þ

where g is the viscosity and a is the diameter of the atom or molecule. This is known as
the Stokes–Einstein relationship [4]. It suggests that the temperature dependence of
the viscosity should be elated to the temperature dependence of the diffusion coeffi-
cient:

D ¼ D0 expð�Q=kTÞ
g ¼ g0 expðþQ=kTÞ ð3:2Þ

with the same value of Q. The temperature dependences of the diffusion coefficient
and the viscosity are usually found to be inversely related, in liquids as well as in
glasses, as suggested by Eq. 3.2, but the Stokes–Einstein relationship does not always
correctly predict the magnitude of the prefactor. However, it is often easier to measure
the viscosity of a material than the diffusion coefficient, and so the Stokes–Einstein
relationship is often used to estimate diffusion coefficients from viscosity measure-
ments.
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Problems

1. The diffusion coefficient can be fitted to an Arrhenius expression of the form:
D = D0 exp(–Q/kT)
a) From Fig. 3.1, calculate D0 and Q for O2 and silicon in SiO2.
b) Evaluate the Qs in two different units: eV per atom and kcal/mol.
Note to the instructor: Comparing the results of this analysis from several people
indicates the sensitivity of the value of D0 to small differences in Q.

2. What is the viscosity as given by the Stokes–Einstein relationship of a liquid at
room temperature with a diffusion coefficient of 10�9 m2s�1?

3. According to the Stokes–Einstein relationship, how will the diffusivity of helium
and argon differ in the same liquid?
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Chapter 4

Diffusion in Crystals

4.1

Diffusion in a Crystal

The diffusion in a solid is also described by Fick’s Law, but the concepts of atom
velocity and mean free path, which we used to derive a form of Fick’s first law for
a gas or a liquid, do not apply in a crystal. Instead we can consider the flux of atoms
between two adjacent planes in the crystal (see Shewmon [1]), separated by a distance a,
such as are labeled 1 and 2 in Fig. 4.1.

The flux of atoms from plane 1 to plane 2 is given by:

J1!2 ¼ N1�=2 ð4:1Þ

where N1 is the number of atoms per unit area in the plane on the left, and � is the
jump rate of an atom. There is an equal probability that the atom will jump left or right,
so the jump rate to the right is given by �/2.

Similarly, the flux of atoms from plane 2 to plane 1 is given by:

J2!1 ¼ N2�=2 ð4:2Þ

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3

Figure 4.1 Flux of atoms between two adjacent planes in a solid.
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The net flux is given by:

J ¼ J1!2 � J2!1 ¼ ðN1 � N2Þ�=2 ð4:3Þ

N1 is number of atoms per unit area in plane 1, and denoting C1 as atoms per unit
volume, the concentration of atoms in plane 1 is C1 = N1/a.

The concentration gradient is given by:

dC

dx
¼ C2 � C1

a
¼ N2 � N1

a2
ð4:4Þ

So that the net flux is given by:

J ¼ �a2 �

2

dC

dx
ð4:5Þ

This is in the form of Fick’s first law, J = –D (dC/dx), so the diffusion coefficient is:

D ¼ a2�=2 in one dimension:

� is the probability that the atom will jump. In one dimension it can jump in either of
two directions; in three dimensions it can jump in any one of six directions.

D ¼ a2�=6 in three dimension:

This formalism assumes that the jump rate is independent of concentration. We will
discuss later the case where this is not a valid.

4.2

Diffusion Mechanisms in Crystals

Diffusion in simple materials such as metals or inert gas crystals is fairly simple. The
atoms act more or less like spheres, and usually diffuse by the motion of vacant lattice
sites. A few species can move around in the spaces between the lattice sites in some
crystals, a process known as interstitial diffusion.

4.2.1

Vacancy Diffusion

In vacancy diffusion, the vacancies can move around relatively rapidly, but the motion
of an atom depends on having a vacancy next to it, with which it can exchange places,
as illustrated in Fig. 4.2. The motion of the atoms is much slower than the motion of
the vacancies.

The equilibrium concentration of vacancies has an Arrhenius temperature depen-
dence:

NV ¼ N expð�EF=kTÞ ð4:6Þ

where EF is the formation energy of a vacancy. We will derive this expression later.
The motion of an atom depends on the probability of a vacancy being next to it, times

the rate at which the atom can exchange places with the vacancy. This latter rate is
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given by a Boltzmann factor containing the energy barrier, QM, which must be over-
come in order for the atom to jump into the vacant site:

expð�QM=kTÞ ð4:7Þ

QM is called the motion energy.
So the diffusion coefficient for vacancy diffusion contains a Boltzmann factor with

the sum of the formation energy of the vacancy and the motion energy:

D ¼ D0 exp½�ðEF þQMÞ=kT� ð4:8Þ

Since the vacancies diffuse much more rapidly than the atoms, the vacancy concen-
tration in a sample is usually much more uniform than the chemical composition. It is
often assumed that the vacancy concentration is uniform throughout the sample, even
though this is not necessarily true.

The equilibrium vacancy concentration in most metals at their melting point is
about 10�3 to 10�4, and it decreases at lower temperatures. And the rate at which
atoms jump into vacant lattice sites is not very fast. So self-diffusion coefficients in
crystals in the range of 10�10 cm2 s�1 or less are not uncommon at the melting point of
metals. This is several orders of magnitude smaller than the diffusion coefficient in a
typical liquid.

Table 4.1 contains data for the self-diffusion coefficient in the solid for several ele-
ments. All except sodium are face centered cubic crystals. Sodium is body centered
cubic. The self-diffusion process occurs in these crystals by vacancy motion.

In the last column is the ratio of the melting point (MP) to the activation energy, Q.
The ratio is approximately the same for the five metals that have the face centered cubic
structure, and not too different for sodium, which is body centered cubic. The melting
point scales with the latent heat of fusion for all these elements, and so it is not too
surprising that the activation energy for self-diffusion also does.

Figure 4.2 Vacant lattice site in a crystalline solid.

Table 4.1 Self-diffusion coefficients in the crystalline phase for some metals.

The data have been fitted to D = D0 exp (–Q/RT).

Melting Point (K) Q (kcal/mol) D0 (cm2 s�1) MP/Q

Cu 1358 47 0.2 29

Ag 1235 44 0.4 28

Ni 1728 67 1.3 26

Au 1337 42 0.09 32

Pb 601 24 0.28 25

Na 371 10 0.24 37
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The prefactor D0 does not. It varies by more than a factor of 10 for the various fcc
metals, with no apparent order to the values. But it should be noted that a small change
in Q on fitting the experimental data can make a large change in the value of D0.

4.2.2

Interstitial Diffusion

Some elements fit into the interstitial spaces in the lattice of other elements, and they
move in the spaces between the atoms, as illustrated in Fig. 4.3. They can move through
the lattice much more rapidly than substitutional atoms since they do not require the
presence of a vacancy. Examples are carbon in iron, hydrogen in platinum, and copper
in silicon. The silicon lattice is much more open than the close-packed structure of
metals, so there are more interstitial diffusers in silicon than in metals.

Typically, interstitial diffusion rates are more like liquid diffusion rates than like
vacancy-mediated diffusion rates. For example, copper in silicon has a diffusion coef-
ficient of about 10�4 cm2 s�1. For this reason, it is important to keep copper from
getting into the silicon during IC processing.

The rapid diffusion of carbon in iron is responsible for the ability to modify the
properties of steels using heat treatment. The rapid diffusion of hydrogen through
platinum is used to purify hydrogen.

Figure 4.4 shows the diffusion rates for several elements in silicon on an Arrhenius
plot. The rapidly diffusing species are interstitial. Copper is at the top of the chart. The
elements at the bottom are substitutional, and move by vacancy diffusion. The sub-
stitutional elements such as B, Sb, As, P are the conventional dopants in silicon, and
must be on lattice sites to be electrically active. Their diffusion coefficients at 1000 8C
are about ten orders of magnitude slower than copper. So during a diffusion anneal,
which is designed to move one of these elements ten nanometers, copper will move
one millimeter.

4.4

Equilibrium Concentration of Vacancies

4.4.1

Thermodynamic Analysis

If vacancies are added to a crystal, then the energy of the crystal will be increased by the
energy to create a vacancy times the number of vacancies per unit volume that are

Figure 4.3 Interstitial atom in a crystal.
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formed. But the vacancies increase the entropy of the crystal (its structure is less per-
fect). The change in free energy of the crystal caused by adding NV vacancies can be
written:

F ¼ NVEF � kT ln W ð4:9Þ

Figure 4.4 Diffusion coefficients in silicon.
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The free energy of the crystal increases by EF for each vacancy added, and the entropy,
S, is increased by S = klnW, where W is the number of ways in which N atoms and NV

vacancies can be arranged on N + NV sites:

W ¼ ðNþ NVÞ!
N!NV!

ð4:10Þ

Using the Stirling approximation for the logarithm of a factorial:

lnðN!Þ ¼ N lnðNÞ � N ð4:11Þ

we can write:

ln W ¼ ðNþ NVÞ lnðNþ NVÞ � N ln N� NV ln NV ð4:12Þ

This can also be written as:

k ln W ¼ �k NV ln
NV

Nþ NV

þ N ln
N

Nþ NV

� �
ð4:13Þ

which is a familiar form for the entropy of mixing, which we will see again when we
discuss the thermodynamics of alloys. Since the logarithmic terms are negative, the
entropy of mixing is positive, which corresponds to an increase in the disorder of the
crystal.

The equilibrium state of the system is given by the minimum in the free energy with
respect to the vacancy concentration:

dF

dNV

¼ 0 ¼ EF þ kT½ln NV � lnðNþ NVÞ� ð4:14Þ

or:

NV

Nþ NV

¼ expð�EF=kTÞ ð4:15Þ

The equilibrium vacancy concentration is given by a Boltzmann factor containing the
formation energy of a vacancy.

4.4.2

Kinetic Analysis

The same result can be obtained in a simpler way using a kinetic model, which we will
discuss next.

Consider a source/sink of vacancies on or in a crystal, as illustrated in Fig. 4.5. The
volume of the crystal into or from which an atom can jump into or out of the source is
Aa, an effective area of the source, A, times the atomic diameter, a.

This source could be a free surface, a void in the crystal, a kink on a dislocation line,
or any other defect that does not change its energy when a vacancy is removed from or
added to it. The rate at which vacancies leave the source to go into the crystal is given by
the number of atomic sites to which the vacancy can jump, times the rate at which it
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will jump. The number of atomic sites to which the vacancy can jump is given by the
number of atomic sites per unit volume (N + NV), times Aa, the volume of crystal
accessible to the source/sink. In order to create a vacancy in the lattice, the formation
energy of the vacancy, EF, is required, plus enough energy to overcome an energy
barrier, of height Q, for the vacancy to leave the source.

Jþ ¼ ðNþ NVÞaA exp½�ðEF þ QÞ=kT� ð4:16Þ

The rate at which vacancies will leave the crystal and enter the sink is given by the
number of vacancies next to the sink, times the rate at which they jump into the
sink. The number of vacancies next to the sink can be written as the number of va-
cancies per unit volume, NV, times the same volume of crystal accessible to the source/
sink, aA. The vacancy must surmount the same energy barrier of height Q to jump into
the source/sink.

J� ¼ NVaA exp½�Q=kT� ð4:17Þ

There is equilibrium when the two fluxes are equal:

NV

Nþ NV

¼ expð�EF=kTÞ ð4:18Þ

This is the same result that was derived above from a statistical thermodynamics ana-
lysis.

The thermodynamic analysis implies that the vacancies appear by magic in the crys-
tal. This is not the case. The rate analysis emphasizes that the equilibrium concentra-
tion of vacancies is achieved by vacancies joining and leaving sources and sinks.

When the temperature of the crystal changes, vacancies must leave or enter the
source/sinks, and then diffuse through the crystal in order to establish the new equi-
librium concentration. How rapidly this happens will depend on the density of source/
sinks, on how rapidly the vacancies join and leave them, and how rapidly they diffuse
through the crystal. In a typical metal, there are many dislocations that can act as
sources and sinks for vacancies. And so the vacancy concentration in a metal is usually
close to the equilibrium value. In silicon crystals there are few if any dislocations, and

Figure 4.5 Schematic illustration of a vacancy

source on or in a crystal.
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the vacancy equilibrium is established at the surfaces. The vacancy concentration can
be quite far from equilibrium in a silicon crystal.

The diffusion rate for an atom due to vacancy motion depends on the probability that
the atom will have a vacancy next to it, times the rate at which the atom jumps into the
vacant site, as in Eq. 4.8:

D ¼ NV

Nþ NV

DV ¼ D0
V exp½�ðQM þ EFÞ=kT� ð4:19Þ

This equation implies not only that the concentration of vacancies is at equilibrium,
but also that it is uniform throughout the sample. Neither of these is necessarily true.

A small void can be a source and sink for vacancies, but the energy of the void
changes when a vacancy is added or removed. We will discuss this later when we
talk about nucleation, and the size dependence of the energy of small clusters of atoms
or voids.

The motion energy is likely to be different for the different species in an alloy to
jump into a vacant lattice site.

4.5

Simmons and Balluffi Experiment

Simmons and Balluffi [2] measured both the length and the lattice parameter of a
metal sample as a function of temperature. They found that the length of the sample
increased faster with increasing temperature than did the lattice parameter, as shown
in Fig. 4.6.

The length of the crystal depends on both the lattice expansion and the change in
volume of the crystal due to the vacancies. The vacancy concentration of their samples
was given by the difference between the actual length of the sample and the lattice
expansion. This measurement can be made for metals, where the vacancy concentra-
tion is 10�3 to 10�4 at the melting point, but for silicon, the vacancy formation energy is
larger, and so the vacancy concentration at the melting point is only about 10�5, which
is too small to be measured by this method.

4.6

Ionic and Covalent Crystals

The various elements in an ionic or covalent crystal will in general diffuse at different
rates [3, 4]. For example, in lithium niobate (LiNbO3), the lithium moves around ra-
pidly at 125 8C, whereas the niobium does not move around much below about
1000 8C. Each element stays primarily on its own sub-lattice. The diffusion process
is usually by motion of defects, such as vacancies, on the sublattices, or by the motion
of interstitials.
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The role of defects in diffusion in ionic crystals is illustrated by diffusion in lithium
niobate. Lithium niobate is a non-linear optical material that is used to make SAW
devices and optical modulators. Surface optical waveguides for the optical modulators
are made by diffusing titanium into the crystal from the surface. The titanium sub-
stitutes for niobium in the lattice. Increasing the lithium concentration by a small
amount changes the number of vacancies on the niobium sub-lattice. Changing
the lithium to niobium ratio by one part in a thousand changes the diffusion coeffi-
cient of titanium by about ten per cent. So the stoichiometry of the crystal must be very
carefully controlled in order to control the diffusion coefficient in the crystal, which
determines the width of the surface waveguides.

In an ionic crystal, charge neutrality prevails, since a very small departure from
charge neutrality creates a very large electrical field. If there are two differently
charged point defects in a crystal, each will have its own diffusion rate, but the effective
diffusivities of the two species will be the same. The fluxes of the two charged species
will be coupled so that there is no net flux of charge. The fluxes are coupled through the
electric field that is generated if the fluxes are not coupled. The electric field adds a drift
component to the flux of each species.

JA ¼ �DA

dCA

dx
þ ZACA

DA

RT
FE ð4:20Þ

JB ¼ �DB

dCB

dx
þ ZBCB

DB

RT
FE ð4:21Þ

Here the subscripts A and B refer to the two mobile species, D is the diffusion coeffi-
cient, Z is the charge state of the species, C is the concentration of the species, F is the
Faraday constant, and E is the electric field. The Einstein relation has been invoked to
replace the defect mobility with DF/RT in these equations. The second term in these

Figure 4.6 The length of a sample and the lattice parameter of the same sample at various temperatures.
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equations is the drift term, which speeds up the slower defect and slows the faster
defect, depending on the charge on the defect relative to the direction of the electric
field, so that the fluxes of the two defects are the same. An initial imbalance in the net
flux creates the electric field. If only one component is mobile, then the field will build
up to effectively stop diffusion. On the other hand, an externally applied fieled will
promote an ionic flux.

4.7

Stoichiometry

As mentioned before, the vacancy concentration in metals at their melting point is
typically 10�3 to 10�4. Since a deviation from stoichiometry of one part in one thou-
sand can produce a concentration of 10�3 vacant sites on one of the sub-lattices in an
ionic crystal, it is not surprising that variations in the stoichiometric ratio of one part
per thousand can have a significant effect on diffusion rates.

This effect is used to advantage in yttrium- and calcium-stabilized zirconia. The
addition of yttrium or calcium to the zirconia permits the creation of an oxygen defi-
cient crystalline material, with many vacant sites on the oxygen sub-lattice. Oxygen
ions can readily diffuse through these materials, and so they are used as oxygen sen-
sors. The sensors are made by placing porous electrodes on the two faces of a thin
sample. At an appropriate elevated temperature, oxygen ions will diffuse through
the crystal, creating a voltage across the sensor. The voltage depends on the difference
between oxygen concentration at the two electrodes.

Alternatively, a voltage can be applied to the two electrodes, and oxygen ions will drift
through the zirconia, and come out the other side. This is used to obtain pure oxygen
from air, because nothing else can move through the crystal.

4.8

Measurement of Diffusion Coefficients

A usual starting configuration is to bond together two blocks of material of differing
compositions. This configuration is known as a diffusion couple. Alternatively, one
material can be deposited on the surface of another to provide the starting configura-
tion. Ion implantation can be used to provide an initial configuration.

The composition profile can be determined by slicing the final sample and measur-
ing the composition in each slice by a wet chemical or other chemical analysis method.
X-ray fluorescence, EDAX or microprobe analysis are also commonly used. Radio-
active tracers are also used by introducing an appropriate radioactive isotope, and
then counting the radioactivity of each slice. This is a preferred method for obtaining
self-diffusion coefficients. Rutherford backscattering can be used to determine the
composition distribution after ion implantation and a diffusion anneal. Secondary
ion mass spectroscopy (SIMS) is also used. Here the surface is sputtered away by

4 Diffusion in Crystals36



incident ions, and the ions that come from the surface are analyzed using a mass
spectrometer.

A procedure called delta doping is used to study interactions between species in
semiconductors. Silicon can be grown epitaxially on silicon. So a thin doped layer
can be deposited, followed by an undoped layer, and this can be repeated for several
layers. A different species can then be deposited on the surface and diffused in. The
effect of this component on how the thin doped layers spread out in time gives in-
formation about the interaction between the two species. The composition of the
in-diffusing species decreases with distance from the surface, so the composition de-
pendence of the interaction can be assessed. The effects of ion-implantation damage
can also be explored with this method.

4.9

Surface Diffusion

Most surfaces are not clean. They have oxide layers, finger prints, films of one sort or
another, foreign particles, etc. For example, window glass is hygroscopic, and typically
there is an adsorbed layer of water about five atom layers thick on the surface. A thick
layer of oxide spontaneously grows on aluminum when it is exposed to air. Two mono-
layers of oxide form almost instantly on silicon when it is exposed to air. The people
doing semiconductor processing go to great lengths to clean wafers and to keep them
clean during processing.

Studies of surface diffusion are usually carried out under ultra high vacuum (UHV)
conditions in order to avoid contamination [5], and these studies provide insight into
surface-diffusion processes under carefully controlled conditions, rather than under
real world conditions. The latter are much more complex.

Studies of self-diffusion on a clean surface in a UHV system indicate that the sur-
face-diffusion process involves the motion of adatoms along the surface. Adatoms are
atoms that sit on top of an otherwise flat surface. The surface diffusion rate is the
product of the adatom density times the rate at which the adatoms move. The surface
adatoms are less constrained than bulk atoms, and they move much more rapidly than
bulk atoms. The adatoms can even make long jumps over several surface sites. At very
low temperatures, the surface is relatively smooth on the atomic scale, with few ada-
toms, and so the surface diffusion coefficient is small. At higher temperatures, the
adatom density increases, and the jump rate also increases. Near the melting
point, the number of adatoms and their mobility has increased so that the surface
diffusion is approximately like the diffusion that would occur if there were a one-
atom thick layer of liquid on the surface. This behavior is found on highly cleaned
surfaces of metals.

The study of surface migration and adatom motion has been greatly facilitated by the
use of scanning tunneling microscopy (STM) and by atomic force microscopy (AFM).
However, there is some concern that the presence of the probe tip may be altering the
motion of the adatoms. One interesting phenomenon that has been observed is that an
adatom can become trapped on a plateau that is bounded by a step. The atom will be
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less tightly bound to the surface as it goes over the step, and that corresponds to a
higher energy state, which represents an energy barrier. This is known as the Schwoe-
bel effect [6].

4.10

Diffusion in Grain Boundaries

Small-angle tilt boundaries consist of an array of edge dislocations. It has been found
that diffusion along the array of dislocations in such a boundary is faster than diffusion
across the dislocation lines. There is more space for an atom to move along the core of
a dislocation than there is for it to move through the bulk, so this is not surprising.
Atoms also diffuse faster along a single dislocation. This is important in semiconduc-
tor device processing, where the diffusion of a dopant along a dislocation that pene-
trates a p/n junction can short out the junction. Most silicon devices are made on
dislocation-free silicon for this reason. Bipolar devices are more susceptible to defects
than CMOS devices are.

In high-angle boundaries, there are many atoms that are not tightly bound to either
of the lattices on the two sides of the boundary. Atoms diffuse much more rapidly
along grain boundaries than through the bulk. The diffusion along a high-angle
boundary is about the same as would occur if there were a one- or two-atom layer
thickness of liquid at the grain boundary. Atoms that have diffused rapidly along a
grain boundary can then diffuse out laterally from the grain boundary into the adja-
cent bulk. Additions are made to some alloys to reduce grain-boundary diffusion by
adding elements that segregate to the grain boundaries, and once there, diffuse more
slowly than the matrix atoms.

4.11

Kirkendall Effect

This effect depends on the fact that the rate at which a vacancy will change places with
an atom in an alloy is different for the different components of the alloy. For example, a
copper atom will jump into a vacant lattice site more rapidly than a silver atom in a
copper-silver alloy. There is usually a difference in jump rates for various atom species
in the same lattice. One result of this was demonstrated by Kirkendall [7] using a
copper-silver diffusion couple. Copper and silver are both face centered cubic me-
tals, and they have continuous mutual solid solubilities. Kirkendall joined a piece
of copper to a piece of silver with a fine mesh of molybdenum wire between
them, as illustrated in Fig.4.7.

After a diffusion anneal, the metallurgical junction, that is, the plane where the
composition is 50:50 copper to silver, was no longer at the molybdenum wires.
The metallurgical junction was displaced into the silver region. The copper exchanged
place with the vacancies more rapidly than the silver, and so there was net flux of
copper across the plane of the molybdenum wires into the silver side of the diffusion
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couple. There was a net flux of vacancies in the opposite direction. The concentration
of these vacancies increased sufficiently in the region on the copper side of the junc-
tion so that the vacancies precipitated out as voids [8, 9]. These are known as Kirkendall
voids.

In semiconductor devices there are many places where dissimilar metals are joined.
Each of these is a potential site for the creation of Kirkendall voids. These voids have
often been observed to form where a lead of one metal is connected to a bond pad of a
different metal. The voids weaken the strength of the connections, so that the leads
tend to fall off.

4.12

Whisker Growth

It is well known that metals can deform at high temperature by grain-boundary creep.
The atoms can diffuse rapidly along grain boundaries, and can change the shape of a
sample by moving from a grain boundary that is perpendicular to a compressive stress
to a grain boundary that is parallel to a compressive stress. In doing so the sample gets
shorter and wider, in response to the applied stress. This phenomenon can give rise to
whisker growth under appropriate conditions [10].

For deformation, a high temperature usually means a temperature above about one
half of the melting point in degrees Kelvin. Tin melts at 232 8C, and so room tempera-
ture qualifies as a high temperature for deformation processes in tin.

Whisker growth can be readily observed by stacking several steel sheets that have
been coated with a fairly thick layer of tin and then compressing the stack in a vice.

Figure 4.7 The markers indicate the initial position of the interface. The dashed

line indicates the final position of the metallurgical interface after diffusion.
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(In the good old days, pieces cut from a Pet milk can were used.) This assures a small
grain size for the tin, and some suitable sites for whisker growth. The whiskers grow
from their base by a process that is akin to grain-boundary creep, except that the atoms
deposit at a suitable grain-boundary junction near the surface, and material is effec-
tively extruded from the sample in the form of a whisker as illustrated in Fig. 4.8.

This happens at solder joints in electronic components where there is stress on the
joints because of the way the devices are mounted. The whiskers tend to make short
circuits.

4.13

Electromigration

This is the effect that limits the size of the conductor stripes on semiconductor devices.
The minimum feature size for the devices is approaching 0.1 micrometers, but the
width of the conductor stripes is greater than one micrometer. About half of the area
on a semiconductor chip is taken up by the wiring. On advanced devices, there are
several layers of metallization.

Electromigration becomes important when the current density gets above about 105

A/cm2 [11]. It is sure to be a problem above 106 A/cm2. To put this into perspective, it
takes about 3 to 5 mA to switch a bipolar transistor, and about 1 mA to switch a CMOS
gate. 1 mA in a 1 lm by 1 lm conductor gives a current density of 105 A/cm2. And
that is for one device. The power distribution lines carry current to many devices.

Electromigration is caused by momentum transfer between the electrons and the
atoms in the conductor. The electron mass is about one-thousandth the mass of an
atom, and so the electron momentum cannot displace an atom that is on a lattice site.
But it can bias the hopping motion of atoms in a grain boundary that are not tightly
bound to any one lattice site, as illustrated in Fig. 4.9.

Figure 4.8 Whisker growth.
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Lower melting point metals are more susceptible to this than higher melting point
metals, and so copper is more resistant to electromigration than aluminum. This is
one of the reasons why copper is replacing aluminum in ICs. The other reason is that
copper has lower resistivity than aluminum.

The loosely held atoms in grain boundaries can move around at very low tempera-
tures. The motion of the atoms is effectively a displacement of charge in the metal.
This motion of charge in the wire connected to the input of very high gain and well-
shielded amplifiers creates noise in the amplifier. The noise has a frequency spectrum,
and the amplitude of the noise is higher at lower frequencies. The amplitude of the
noise is inversely proportional to the frequency, and so this is known as 1/f noise. It
seems strange that atoms moving around in grain boundaries in a metal can make
electronic noise in an amplifier. Electromigration is due to the net displacement
by electron momentum of these same loosely bound atoms in the grain boundaries.

Electromigration displaces the atoms in the grain boundaries. DC currents produce
a net flux of atoms, and this creates voids where the atoms leave, and makes hillocks
where the atoms end up, as illustrated in Fig. 4.10.

The voids decrease the cross section of the conductor, which increases the current
density, which increases the electromigration. Ultimately, an open circuit is created.
Electromigration also occurs with an AC current, but the lifetime is typically about ten
times longer than with DC.

The motion of material during electromigration interacts with the layers above and
below the conductor, generating a stress. Putting a capping layer on top of the con-

Figure 4.9 Atoms in a grain boundary are not tied

strongly to sites in either lattice.

Figure 4.10 The motion of atoms caused by electromigration creates

voids where the atoms leave and hillocks where they accumulate.
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ductor, as illustrated in Fig.4.11, increases the stress due to migration in the conduc-
tor. This stress reduces the amount of migration, which increases the lifetime.

Electromigration occurs in grain boundaries, and the migration rate depends on the
grain size. Where the grain size is small there are more atoms that can be displaced by
electromigration than where the grain size is large. And so, if the grain size changes
along a wire, the flux of atoms along the wire changes, as illustrated in Fig. 4.12.

Where the atom flux decreases due to an increase in grain size, there will be a pileup
of atoms, because more atoms are arriving there than are leaving, and conversely,
where the flux of atoms increases due to a decrease in grain size, there will be a
net out flux of material, creating voids. So variations in the grain size in the conductor
stripes are bad for electromigration. The conductor stripes on ICs are deposited metal,
and the grain size usually changes where the conductor stripe goes over irregularities

in the surface, and there are often variations in grain size at a via or where the con-
ductor stripe meets a contact pad.

Electromigration occurs in grain boundaries that lie along the axis of the conductor,
but not in grain boundaries that are perpendicular to the axis. When the grain size in

Figure 4.11 A capping layer on top of the

conductor creates a back stress when the atoms

migrate, and so tends to decrease the atom

motion.

Figure 4.12 A variation in grain size produces a variation

in atom flux.

Figure 4.13 Bamboo structure in a one-micrometer wide conductor stripe (from Vaidya et al. [12]).
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the conductor is about the same as the diameter of the conductor, the grain boundaries
tend to be perpendicular to the axis of the conductor. This is known as a bamboo
structure, illustrated in Fig 4.13.

This structure reduces electromigration significantly. As shown in Fig. 4.14, the
mean time to failure decreases with the width of the conductor stripe down to about
2 micrometers, and then increases below 2 micrometers because bamboo grain struc-
tures form there.

The data in the graph were obtained for the same current density in the conductor
stripes of various widths, so the total current in the conductor stripes is lower for the
narrower stripes in the graph.

Figure 4.14 Mean time to failure for the same current density, 105 A/cm2,

for various conductor stripe widths.
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Problems

1. Silver and gold form a continuous series of solid solutions, and interdiffusion
occurs by a vacancy mechanism. A diffusion couple was made by depositing a
thick layer of silver onto a gold substrate. At 1000 K, the diffusion coefficient
of silver into gold is 10�10 cm2 s�1, and the diffusion coefficient of gold into silver
is 2 � 10�11 cm2 s�1.
a) Why can the two diffusion coefficients be different?
b) Will the plane where the concentration is 50:50 move during diffusion? If so,
which way?
c) Will there be a net flux of vacancies through the interface during diffusion? If so,
where will the vacancies come from and where would they go? On which side of the
interface might you expect to find voids?
d) Sketch the concentration profile through the junction after annealing for three
days at 1000 K.
e) Suggest an experimental method that could be used to measure the concentra-
tion profile in the annealed sample in order to determine the diffusion coefficients.

2. The diffusion coefficient can be fitted to an Arrhenius expression of the form:
D ¼ D0 expð�Q=kTÞ

a) From Fig. 4.4, calculate D0 and Q for copper and phosphorus in silicon.
b) Evaluate the Qs in two different units: eV per atom and kcal/mol.

Note to the instructor: Comparing the results of this analysis from several people in-
dicates the sensitivity of the value of D0 to small differences in Q.
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Chapter 5

Diffusion in Semiconductors

5.1

Introduction

This chapter will start with a brief review of the role of donor and acceptor dopant
atoms in semiconductors.

When atoms come together to form a solid, the energy levels of the electrons on the
atoms spread out into bands. The total number of allowed valence states in silicon is
the same as the number of valence electrons: four per atom. However, these states are
spread out in energy, and this energy distribution is known as the density of states. In a
semiconductor, there is an energy gap between the valence states where the electrons
on neighboring atoms interact to hold the solid together, and the conduction states
where the electrons can move through the crystal. At low temperatures, all the elec-
trons are in the valence states, and so silicon does not conduct electricity. At higher
temperatures, some electrons have enough energy to cross the band gap to the con-
duction state. These electrons can move through the crystal, and conduct electricity.
When an electron leaves the valence band for the conduction band, it leaves behind a
hole. A hole is effectively a positive charge, and it can also move through the crystal and
conduct electricity. Dopant atoms in the crystal can also help to create conduction
electrons or holes in the crystal.

We can define an effective density of states NC for the conduction band, and NV for
the valence band. The occupancy of these states depends on temperature. But, unlike a
collection of atoms where many atoms can have the same energy, no two electrons in a
crystal can occupy the same state. The occupancy of the electronic states in a crystal is
described by a Fermi function, rather than the Boltzmann function that describes the
energy distribution of atoms.

The Fermi function has the form:

f ðEÞ ¼ 1

1þ exp½ðE� EFÞ=kT� ð5:1Þ

where EF is the Fermi energy. At very low temperatures, f(E) is 1 for energies lower that
EF, so that all the states up to EF in energy are filled, and f(E) is 0 for energies greater
than EF, so all the states above EF in energy are empty. At higher temperatures, there is
not a sharp transition between the filled and empty states. The transition spreads out
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by about kT in energy, so that some of the states below EF are empty, and some of the
states above EF are filled.

The concentration of electrons in the conduction band, n, can be written as:

n ¼ NC exp½ðEF � ECÞ=kT� ð5:2Þ

and the concentration of holes in the valence band, p, can be written as:

p ¼ NV exp½ðEV � EFÞ=kT� ð5:3Þ

For an intrinsic semiconductor, that is one containing no dopants, the number of
holes and electrons must be the same, that is, ni = pi. The Fermi level in an intrinsic
semiconductor is EF

i, so we can turn Eqs. 5.2 and 5.3 around in order to express the
effective densities of states in terms of the intrinsic carrier concentration and the Fer-
mi level of the intrinsic material:

NC ¼ ni exp½ðEC � Ei
FÞ=kT�

NV ¼ ni exp½ðEi
F � EVÞ=kT� ð5:4Þ

The carrier concentrations in non-intrinsic material can then be related to its Fermi
level and to the Fermi level and carrier concentration of intrinsic material, rather than
to the density of states and the positions of the band edges:

n ¼ ni exp½ðEF � Ei
FÞ=kT�

p ¼ ni exp½ðEi
F � EFÞ=kT� ð5:5Þ

From Eq. 5.5 a very important relationship follows directly:

np ¼ n2
i ð5:6Þ

Equations 5.5 and 5.6 provide simple expressions for the carrier concentrations in
doped semiconductors in terms of the carrier concentrations and Fermi level of
the intrinsic material, rather than in terms of the density of states and the positions
of the band edges.

Dopant atoms that are intentionally introduced into silicon are usually shallow do-
nors (a group V element with an energy level close to the conduction band) or shallow
acceptors (a group III element with an energy level close to the valence band). These
donor and acceptor sites are usually charged at room temperature, that is, the extra
electron on the donor atoms has left the donor atom and is in the conduction band, so
that the donor atom is positively charged. Similarly, the acceptor atoms have picked up
an electron from the valence band, creating a hole, and the acceptor atom is negatively
charged. At room temperature, the electrons and holes can migrate through the lattice,
but the charged dopants cannot move, so they create a charge that has a fixed position.
The charged dopant atoms create fixed internal electrical fields in the semiconductor.

Overall, the crystal must maintain a neutral charge, so that the excess charge created
by the dopant atoms is compensated by a change in the number of electrons and holes.

p� n ¼ NA � ND ð5:7Þ

NA and ND are the number of acceptor and donor atoms per unit volume, respectively.
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Combining Eqs. 5.7 and 5.6 results in a quadratic equation for n:

n2 � nðND � NAÞ � n2
i ¼ 0 ð5:8Þ

If all of the dopants are not ionized, which is likely to occur at high doping levels, the
concentration of ionized dopants should be used in Eq. 5.8.

With no dopants, NA = ND = 0, so n = ni, as it should be for intrinsic material.
For a large excess of donor atoms,

ND � NA � ND � ni; n � ND; p � n2
i =ND ð5:9Þ

For a large excess of acceptor atoms,

NA � ND � NA � ni; p � NA; n � n2
i =NA ð5:10Þ

The carrier concentrations, n and p, as determined from Eq. 5.8 can be inserted into
Eq. 5.5 to obtain the position of the Fermi level in the doped material. The Fermi level
rises above the intrinsic level for net donor concentrations, and falls below the intrinsic
level for net acceptor concentrations.

5.2.1

Vacancy Diffusion in Silicon

Vacancy diffusion in silicon is much more complex than in metals, because the motion
of the vacancies depends on the position of the Fermi level [1]. It is even more complex
in compound semiconductors, because vacancies can exist on the different sub-lattices
in the crystal. In the metals, the motion of the vacancy does not involve charge effects,
and the barrier to motion is basically the elastic interaction of an atom squeezing past
its neighbors in order to move into the vacant site. But in silicon, the vacancy can exist
in various charge states, as illustrated in Fig 5.1, which shows the energy levels of
vacancies in various charge states.

For example, the energy level of a vacancy with a single negative charge is 0.44 V
below the conduction band. The number of vacancies in each charge state depends on
the Fermi level, which depends on the dopant concentration.

The concentration of singly charged vacancies in doped silicon can be related to that
in intrinsic silicon:

V�

V�i
¼ exp

EF � Ei
F

kT

� �
¼ n

ni

ð5:11Þ

where V� is the concentration of singly charged vacancies in doped silicon, Vi
� is the

concentration of singly charged vacancies in intrinsic silicon, EF is the Fermi level in
the doped silicon, EF

i is the Fermi level in intrinsic silicon, n is the electron concen-
tration in the doped sample, and ni is the electron concentration in intrinsic silicon.

For n-type silicon, EF > EF
i, so n > ni , and conversely in p-type silicon. For a dopant

concentration of 1018 /cm3, which is about 20 ppm, n/niffi 1.2 in n-type, and n/niffi 0.8
in p-type silicon.
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Similar expressions give the concentrations of vacancies in other charge states.
Table 5.1 contains the activation energy, Q, as well as D0 for self-diffusion by vacan-

cies for various charge states of the vacancy, as well as the values for vacancy diffusion
of common substitutional dopants. The diffusion coefficient is different for each
charge state and, in general, has a different temperature dependence for each charge
state.

For intrinsic silicon, the diffusion coefficient can be written as the sum of the con-
centration of each type of vacancy times the diffusion coefficient in each charge state:

Di ¼
X

r

½Vr�iDr
i ð5:12Þ

Table 5.1 Activation energy, Q, and D0 for diffusion by vacancies

in silicon. (After Fair [2]).

Q (eV) D0 (cm2 s�1)

Si VO 3.9 0.015

V� 4.54 16

V= 5.1 10

V+ 5.1 1180

As Vo 3.44 0.066

V� 4.05 12.0

B Vo 3.46 0.037

V+ 3.46 0.76

P Vo 3.66 3.85

V� 4.0 4.44

V= 4.37 4.42

Ge 5.28 6.25 � 105

Figure 5.1 Energy levels for a vacancy in various charge states in silicon. (After Fair [2]).
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Here Vr is the concentration of vacancies in charge state r, and Di
r is the corresponding

diffusion coefficient.
For doped silicon, the self-diffusion coefficient for vacancy diffusion can be written

as:

DSi ¼ D0
Si þ D�si

n

ni

� �
þ D��si

n

ni

� �2

þDþSi

ni

n

� �
þ DþþSi

ni

n

� �2
ð5:13Þ

5.2.2

Diffusion of Phosphorus in Silicon

The diffusion coefficient for phosphorus in silicon can be written:

DP ¼ hD0
i þ D�i

n

ni

� �
þ D��i

n

ni

� �2

ð5:14Þ

where h is a constant. The contribution of positively charged vacancies can be ignored
because phosphorus is a donor. But phosphorus combines with a vacancy to form a
negatively charged phosphorus-vacancy complex by the reaction:

Pþ þ V¼ Ð ½PV�� ð5:15Þ

These complexes can diffuse, but do so more slowly than unassociated phosphorus
atoms. During the in-diffusion of phosphorus, the phosphorus combines with vacan-
cies to form a complex at high concentrations near the surface. Further into the wafer

Figure 5.2 Diffusion of phosphorus into silicon.

(After Fair, Tsai [3]).
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where the phosphorus concentration drops off to a low enough value so that the Fermi
level passes through the energy level of the doubly negatively charged vacancy at 0.11
eV below the conduction band, then the phosphorus-vacancy complexes break up, and
the phosphorus diffuses more rapidly. This creates a kink in the phosphorus concen-
tration profile, as illustrated in Fig. 5.2. The open circles represent the total phos-
phorus content. The black dots represent the electrically active phosphorus, which
is substitutional on the lattice sites. At the high concentrations, most of the phos-
phorus is tied up in vacancy complexes, and so is not electrically active.

This is also responsible for an effect called emitter push, illustrated in Fig. 5.3. When
phosphorus is diffused into silicon to form an emitter after a boron diffusion, the
boron under the phosphorus emitter diffuses further into the silicon because of
the increased vacancy concentration resulting from the breakup of the phos-
phorus-vacancy complexes.

5.2.3

Diffusion of Arsenic in Silicon

The diffusion coefficient of arsenic in silicon has the same dependency on the various
charge states of the vacancy as phosphorus. At high concentrations, two arsenic atoms
can combine with a vacancy to form a complex that diffuses slowly.

At lower concentrations, one of the arsenic atoms leaves the complex:

½VAs2�
0 Ð ½VAs�0 þ Asþ þ e�

V� þ Asþ Ð ½VAs�0 ð5:16Þ

The V-As complex is the dominant diffusing species in arsenic-doped silicon.

5.2.4

Diffusion of Boron in Silicon

Unlike phosphorus and arsenic in silicon, boron is rather well behaved. Boron is an
acceptor, and so the dominant vacancy in boron-doped silicon is positively charged.
The diffusion coefficient for boron is given by:

DB ¼ Dþi
ni

n
¼ Dþi

p

ni

� �
ð5:17Þ

Figure 5.3 Emitter push.
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And so the diffusion coefficient for boron in silicon increases approximately linearly
with boron concentration, as shown in Fig. 5.4.

The diffusion coefficients for dopants in silicon are strongly dependent on dopant
concentration. The diffusion coefficient for a dopant depends not only on its concen-
tration, but also on the concentration of other dopants.

This behavior is quite different from metals, where the diffusion coefficients in
alloys are relatively independent of concentration.

Diffusion processes in compound semiconductors are even more complicated than
in silicon. There has probably been more work done studying diffusion in silicon than
in all of the compound semiconductors put together, and so there is a lot that is not
known about diffusion in compound semiconductors.

5.3

Diffusion of Zinc in GaAs

An example of complex behavior is zinc diffusion in GaAs. This has been studied
extensively. When GaAs is doped with zinc, most of the zinc atoms substitute for
gallium on gallium sites, where the zinc acts as an acceptor. However, a small fraction
of the zinc atoms are interstitial, and these diffuse much more rapidly than the sub-
stitutional zinc atoms, and so the diffusion process is dominated by interstitial zinc.
The interstitial zinc atoms are donors, and so are positively charged. The creation of a
zinc interstitial leaves a vacancy on a gallium site that becomes positively charged. And

Figure 5.4 Boron diffusion in silicon. (After Fair [2]).
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so the result of all this is that the diffusion coefficient for zinc in GaAs increases with
the square of the zinc concentration, as illustrated in Fig 5.5.

5.4

Recombination-enhanced Diffusion

The diffusion process can also be influenced by recombination events [5, 6]. When an
electron in the conduction band recombines with a charged dopant, the energy given
off by the recombination can generate a photon in a direct gap material, or it can
dissipate as heat, that is by generating phonons. In an indirect gap material such
as silicon, it will always dissipate as heat. The heat increases the kinetic energy of
the dopant atom as well as the kinetic energy of other atoms around where the recom-
bination occurs. Some very small fraction of the time, this extra energy results in the
dopant atom making a diffusion jump. The activation energy for the diffusion jump is
decreased by the recombination energy, ER, which is illustrated in Fig. 5.6.

Figure 5.5 Zinc diffusion in GaAs.

(After Tuck [4]).

Figure 5.6 Energy diagram for recombination at a donor.

5.1 Introduction52



This process is known as recombination-enhanced diffusion (RED). Even though
the dopant atom does not jump every time there is a recombination event, the
jump rate for the dopant atom can be much faster than the thermal diffusion
jump rate.

Recombination events occur when the device is turned on, so that current is flowing
through it. So RED can significantly increase the diffusion rate of dopants in operating
devices over the diffusion rate in devices that are not in operation. RED was respon-
sible for the failure of early semiconductor lasers. The devices could sit around for a
long time at room temperature, but failed fairly quickly, by defect diffusion in the
active region of the laser, when they were turned on.

5.5

Doping of Semiconductors

Traditionally, the doping of semiconductors was done by gas-phase diffusion. This was
a two-step process. In the first step, called the pre-dep, the wafers were exposed to
appropriate gas-phase dopants until a sufficient amount of dopant was deposited
on or into the surface of the wafers. The second step, known as the drive-in, was a
diffusion anneal designed to diffuse the dopant into the wafer so that a p/n junction
was created at the desired depth below the surface of the wafer.

In order to dope wafers n-type, the wafers were loaded into a rack alternating with
wafers of p-glass, a phospho-silicate glass. The rack was then inserted into a tube
furnace, and phosphorus, which has a high vapor pressure, diffused out of the p-
glass, into the gas, and deposited on the wafer. For p-type doping, boron trichloride
gas, BCl3, which decomposes and deposits boron on the wafer, was used.

These vapor deposition processes are difficult to control precisely. They are sensitive
to surface contamination on the wafer, and they are subject to non-uniformity due to
variations in gas flow, non-uniformities in temperature, etc.

The concentration profile in the wafer during pre-dep is an error function, (erf),
because the surface concentration is constant, and it becomes Gaussian during
drive-in, when there is no longer a constant supply of dopant at the surface. The total
amount of dopant in the wafer does not change during drive-in. We will discuss the
mathematics of these diffusion profiles in chapter 7.

5.6

Point-Defect Generation in Silicon during Crystal Growth

The formation of defects in silicon crystals during crystal growth illustrates a case
where the point defects (vacancies and interstitials) are not in thermal equilibrium,
and so they can precipitate to form larger defects, which affect device properties
[7, 8].

In silicon, the self-interstitials move rapidly, and have a fairly large formation en-
ergy. Vacancies, on the other hand, move much more slowly, but have a smaller for-
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mation energy. The interface between solid and liquid silicon is expected to be an ideal
source and sink for both self-interstitials and vacancies, so the concentration of each
type of defect can be assumed to be at its equilibrium value at the interface. Since the
vacancies have a lower formation energy than interstitials, there are many more va-
cancies than interstitials at the interface.

During rapid growth, when the interface is moving rapidly compared to how fast the
point defects can move by diffusion, the defect concentrations are fixed at the interface,
but in the crystal, the interstitials and vacancies annihilate each other, so that at some
distance from the interface there are only vacancies left, as illustrated in Fig. 5.7.

The temperature drops in the crystal away from the interface, and so the equilibrium
vacancy concentration also decreases. At some distance behind the interface the actual
vacancy concentration becomes sufficiently greater than the equilibrium concentra-
tion, and the vacancies precipitate out as tiny voids.

For slow growth, on the other hand, the interstitials can diffuse faster than the inter-
face is moving. The initial concentrations at the interface are the same, but as the
interstitials are eliminated by combining with vacancies, they are replaced by more
interstitials diffusing from the interface. So, at some distance behind the interface,
all of the vacancies have disappeared, and there are only interstitials left, as illustrated
in Fig. 5.8.

As the crystal cools locally, the interstitial concentration exceeds the equilibrium
value, and the interstitials precipitate out as planar stacking faults on (111) planes.

As illustrated schematically in Fig 5.9, the concentration of defects in the crystal is
dominated by interstitial precipitates at slow growth rates, and by vacancy precipitates
at rapid growth rates.

Figure 5.7 Defect concentrations in a silicon crystal behind the interface

during rapid growth. The dashed lines indicate the equilibrium concentrations.
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Figure 5.8 Defect concentrations in a silicon crystal behind the interface

during slow growth. The dashed lines indicate the equilibrium concentrations.

Figure 5.9 Net defect concentration in silicon plotted against

the growth rate divided by the temperature gradient.
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The precipitation process depends on the temperature gradient, and the precipitate
concentration is found experimentally to scale with the growth rate divided by the
temperature gradient, as in Fig. 5.9. The preferred growth condition is in the gap
where the density of both types of defect is low [9, 10].

The stacking faults formed by interstitial precipitation tend to be relatively large
because of the mobility of the interstitials. So their presence and the damage they
do to device yields have been apparent for a long time. The vacancies precipitate
out as microvoids, and the oxygen that is present in Czochralski silicon migrates
to these small voids, and forms a stabilizing layer of silica inside the void, as illustrated
in Fig. 5.10.

These voids went undetected until the devices got so small that these defects began
to reduce the breakdown voltage of CMOS gates if they were in the silicon under the
gate. Researchers then went looking for the source of the problem and found them.

5.7

Migration of Interstitials (and Liquid Droplets) in a Temperature Gradient

One would expect that point defects would migrate from the hot end of a sample
towards the cold end, that is, they would diffuse towards lower temperatures in a
temperature gradient, because the defects move more rapidly at higher tempera-
tures, and the temperature gradient would bias their motion. But interstitials in sili-
con go the other way. They migrate towards higher temperatures.

Liquid droplets in a solid alloy also do this. The liquid droplets that form are rich in a
second component that lowers the melting point of the alloy. The composition of the
liquid droplet will be fairly uniform throughout a small droplet because of rapid liquid
diffusion. The liquid will be below the melting point of the alloy at the lower tempera-
ture in the temperature gradient, and above the melting point at the higher tempera-
ture. So the liquid droplet will melt into the solid at the higher temperature, and the
liquid will freeze at the lower temperature. The droplet will move towards higher tem-
peratures.

Figure 5.10 Microvoid in silicon formed by the precipitation of

vacancies. These microvoids are typically only several tens of nan-

ometers in diameter. Oxygen precipitation forms a layer of SiO2

inside the microvoid.
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5.8

Oxygen in Silicon

Czochralski silicon, which is commonly used for device fabrication, contains about
1018 oxygen atoms per cubic centimeter. There are 5 � 1022 silicon atoms per cubic
centimeter in silicon. During Czochralski growth of silicon, the silicon is melted and
held in a crucible lined with high purity silica. Some of the silica dissolves into the
liquid, which introduces oxygen into the liquid, and some of the oxygen is then in-
corporated in the crystal. The concentration of oxygen that gets into the crystal is in
equilibrium at about 1300 8C. Below this temperature it will tend to precipitate. Micro-
voids can form due to an excess of vacancies during crystal growth, and these are
stabilized by the formation of a layer of oxide inside the microvoid [11]. But the oxygen
can precipitate without the aid of vacancies, in the form of small crystoballite crystals in
the silicon. The oxygen diffuses interstitially to join these precipitates. A SiO2 molecule
in the precipitate occupies the same volume as two silicon atoms in the matrix, and so
when precipitation occurs the excess silicon atoms are displaced to interstitial sites.
The interstitials precipitate out as extrinsic stacking faults, which are bounded by par-
tial dislocations. These defects are one atom layer thick sheets of extra atoms, lying on a
(111) plane, which can grow to be hundreds of micrometers in diameter. The SiO2

precipitate can also produce enough stress to punch out dislocation rings. These dis-
locations and the partial dislocations bounding the stacking faults provide nucleation
sites for the precipitation of unwanted impurity elements, such as Fe, Ni, Cu, etc.,
which may be present.

5.9

Gettering

Getter is a strange word. It originated with vacuum tube technology, where a metal,
such as titanium, was deposited on the interior surface of the glass envelop. This metal
would absorb or “get” unwanted ions and atoms inside the vacuum tube, extending the
life of the tube. The deposited metal came to be known as a getter. This terminology
has carried over into semiconductor technology, where it refers to a material or process
intended to “get” unwanted impurities in the semiconductor.

The precipitation of oxygen is used to “getter” unwanted impurities during silicon
processing. This is known as intrinsic gettering [12]. Oxygen is intentionally caused to
precipitate deep in the wafer so that unwanted impurities will precipitate on the defects
created by the oxygen precipitation. The key to doing this is that growing an oxide layer
on silicon at a temperature below 1300 8C reduces the oxygen concentration in the
Czochralski silicon. Oxide layers are typically grown in air or in an oxygen atmosphere
at temperatures of 1050 8C to 1100 8C or so. The layers grow by the diffusion of oxygen
through the oxide layer to the silicon interface, where new oxide forms. Some of the
oxygen already in the silicon also goes into the oxide layer, reducing the oxygen con-
centration in the silicon next to the oxide to the equilibrium value at the annealing
temperature.
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So a layer that has a lower oxygen concentration, called a denuded zone, can be
created at the surface of the wafer. The wafer is then heat treated so that the oxide
in the bulk of the wafer precipitates, creating defects, which getter impurities, as out-
lined above.

There are also processes that are referred to as extrinsic gettering, which involve
doing something to the backside of the wafer to induce precipitation there. These
include scratching or abrading the backside of a wafer to create damage. The backside
of a wafer can also be damaged with a high velocity jet of water. Polysilicon, which
contains many grain boundaries, is also deposited on the backside of wafers to provide
a sink for impurities. Intrinsic gettering usually has a cost advantage because it can be
done in a batch mode in an annealing furnace.

5.10

Solid-State Doping

As devices have decreased in size, the diffusion anneal to remove ion implantation
damage and to make the dopants electrically active can result in excessive motion
of the dopant. The ion-implantation process can create too much damage for critical
features.

Solid-state doping is used to control the small-scale features at the base region in
bipolar transistors, and in the gate region in CMOS transistors, as illustrated in
Fig. 5.12 for a bipolar transistor. First, a patterned layer of field oxide is grown into
the silicon to provide isolation between adjacent devices. p+-doped polysilicon is de-
posited on the silicon, and then oxide is either deposited or grown on the poly. The poly
and the oxide are patterned to define the active region, and annealed so that the p+

dopant diffuses into the silicon. Next, a thin oxide layer is either deposited or grown
on the surface. Boron is implanted through the thin oxide to make the lightly doped p
base region under the emitter. The implanted boron does not penetrate through the
thick oxide. The thin layer of oxide is then removed to expose the silicon in the emitter
region, and n+-doped poly is deposited in the opening. The n-type dopant is diffused
into the silicon from the n+ poly to make the emitter. The diffusion distances are

Figure 5.11 Denuded zone

for intrinsic gettering.
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extremely small, and the process can be accurately controlled with solid-state doping.
The process described above is called “self-aligned”, because the location of all the
features is controlled by initial opening that was made in the silica and p+ poly
layers. The doped poly layers provide contacts to the silicon.

Figure 5.12 Solid-state doping from polysilicon

in bipolar device fabrication. Both the extrinsic

base and the emitter are diffused from doped

polysilicon.
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Problems

1. Single crystals of silicon grown by the Czochralski method contain oxygen in
excess of their room temperature solubility limit. The oxygen solubility in silicon
at 1100 8C is 5 � 1016/cm3, and the diffusion coefficient for oxygen in silicon is
given by:

DOxygen ¼ 0:19 expð�2:54 eV=kTÞcm2=sec

Plot the oxygen concentration profile in a wafer with an initial oxygen concentra-
tion of 20 ppma after a 48-h anneal at 1100 8C in an inert ambient.
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Chapter 6

Ion Implantation

6.1

Introduction

Ions of widely different energy ranges are used in various applications in semicon-
ductor technology, as illustrated in Fig. 6.1.

In ion-beam deposition, low-energy ions are used to minimize damage to the sub-
strate. For comparison, an atom with thermal energy from an evaporative source has
an energy that is a fraction of an electron volt. An ion incident at a surface with about
30 eV energy has enough energy to displace an atom in most substrates. For sputtering
and cleaning of surfaces, argon ions with an energy of the order of 1 keV are frequently
used. This is enough energy to remove (sputter) atoms from the surface, without doing
too much sub-surface damage. For ion implantation, ions with energies of about
100 keV are used. They create significant damage in the substrate. High-energy he-
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Figure 6.1 Ions of various energies incident on silicon.
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lium ions (alpha particles) are used for ion-beam analysis (Rutherford backscattering),
which will be discussed below.

Today, most of the dopants are introduced into semiconductor wafers by ion im-
plantation. This method is much more costly than vapor deposition, but the dopant
concentration can be carefully controlled since it depends on the ion current. The
dopant distribution can be made very uniform by the use of planetaries, which rotate
the substrate in a controlled pattern through the ion beam. The ions are implanted
with enough energy so that they go right through minor amounts of surface contam-
ination. The ions are typically implanted with about 70 keV energy, and they end up
about 100 nm into the sample.

6.2

Ion Interactions

The ions slow down gradually along their path by interaction with electrons in the
substrate, and they can also be scattered by making direct collisions with the nuclei
of the atoms in the substrate. The strength of these two types of interaction depends on
the type of incident ion, on its energy, and on the substrate material. The energy loss
due to these two processes is shown in Fig. 6.2 for boron, phosphorus and arsenic
implanted into silicon.

Figure 6.2 Energy loss in silicon of phosphorus, arsenic and boron ions

due to nuclear collisions and to electronic interactions. (After Smith [1]).

6 Ion Implantation62



The probability of an incident ion colliding with the nucleus of an atom is about what
is to be expected for a sphere the size of the ion nucleus to hit a sphere the size of an
atomic nucleus. The effective area within which the ion will make a collision with the
nucleus is known as the nuclear collision cross section.

The interaction with the substrate increases as the ions slow down, and so the de-
celeration rate of the ions increases as they penetrate into the substrate. During im-
plantation, most of the ions end up more or less at the same distance into the substrate,
which is known as the end of range, as illustrated in Fig. 6.3.

Values for the end of range of boron, phosphorus, and arsenic ions implanted into
silicon are shown in Fig. 6.4.

There is some scatter in where the ions are located at the end of range. This is known
as straggle. There is straggle both parallel and perpendicular to the incident path of the
ions, as illustrated in Fig. 6.5.

The straggle both parallel and perpendicular to the incident path of the ions impor-
tant in determining where the ions will finally locate. The lateral straggle is especially
important for patterned implants, as illustrated in Fig. 6.6.

Figure 6.3 Incident ions

interact with the electrons

in the substrate, and are

scattered by collisions with

nuclei, and come to rest at

the end of range, RP.

Figure 6.4 End of range for boron,

phosphorus, and arsenic ions im-

planted into silicon. (After Smith [1]).
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6.3

Implantation Damage

The collisions displace atoms in the substrate, and create defects. The amount and type
of damage in the crystal that the ion creates depends on both the energy of the incident
ion and its mass.

Figure 6.5 Straggle for ions implanted into silicon. (After Smith [1]).

Figure 6.6 Position of ions resulting from parallel and perpendicular straggle.
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The incident ions can create interstitials and vacancies, some of which recombine.
There is a standard Monte Carlo program called TRIM that is used to evaluate how
many point defects are generated by nuclear collisions. However, the residual damage
is usually much less than predicted by the TRIM program. A lot of the initial damage
caused by the ions anneals out because of the high local temperature. Recent mole-
cular dynamics studies suggest that most of the damage is concentrated at the end of
range. Unfortunately, the MD simulations have only been done for relatively low-en-
ergy incident ions, because the disturbed volume for higher energy ions is so large that
it can only be modeled with large multiprocessor machines.

During ion implantation the collision of the ion with the nucleus of a substrate atom
can result in a focusing collision. This happens when the incident ion hits the end of a
row of atoms, where the atoms are closely spaced in the row. The whole row of atoms is
displaced, so that a vacancy is created at one end of the row, and an interstitial is
created at the other end of the row. This creates a vacancy and an interstitial that
are well separated in space, and so are much less likely to recombine than if they
were created next to each other.

At the end of range, the residual energy of the ion can make a local hot spot, called a
thermal spike, which can be sufficient to melt a small volume of the substrate. On
rapid cooling the material in the hot spot can become amorphous. The damage to
the substrate depends on the total dose as illustrated in Fig. 6.8.

Figure 6.7 Light ions, a) penetrate further into

the substrate than heavy ions, b) with the same

energy. Heavy ions create more local damage.

Figure 6.8 Schematic illustration of the damage

in a silicon substrate after various doses of

antimony ions.
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A heavy dose can create an amorphous layer. Figure 6.9 is a TEM picture of a buried
amorphous layer that is about 100 nm thick in silicon after implantation with argon.
The damage above the amorphous layer is largely microtwins. Below the amorphous
layer the damage in the substrate consists of small dislocation loops and point-defect
clusters.

The critical dose that is sufficient to create a buried amorphous layer depends on the
type of ion and the implant temperature. Heavier ions create an amorphous layer at a
lower dose, and there is a temperature for each type of ion above which an amorphous
layer will not form.

One interesting recent result from modeling of ion implantation into a metal is that
the molten zone caused by the thermal spike at the end of range expanded the lattice so
much that the surface of the sample was lifted one or two monolayers above the rest of
the surface. When the hot spot cooled down, the surface did not relax back to its ori-
ginal position, but stayed in the elevated position. This created a lot of vacancies where
the thermal spike had been. This will not happen in silicon, which contracts on melt-
ing.

In silicon processing, after implantation, the substrate is annealed to remove the
implantation damage, and to get the dopants onto substitutional sites in the lattice
where they will be electrically active. Often a low-temperature anneal is used to re-
move the defects, and a shorter, higher-temperature anneal is used to make the do-
pants electrically active. It is more difficult to anneal out heavy damage than lighter
damage. Solid-phase epitaxial regrowth of an amorphous layer requires a longer an-
neal than is required to remove lighter damage.

The defects created by ion implantation can play a major role in the diffusion process
and defect interactions make it much more complex. When the annealing time is long,
these defects anneal out relatively quickly, so that they are not present during most of
the anneal, and so they do not significantly affect diffusion. But as device feature sizes
have decreased, the distance the dopants have to move decreases, and annealing times
decrease. The defects are present for more of the total annealing time, so their effect on
dopant diffusion must be taken into account. The total annealing schedule must be
very carefully worked out, because the final positions of the dopants will depend on the
total time at temperature that they experience.

The dopant diffusion process depends on the Fermi level, defect interaction, com-
plex formation, and can only be described by a messy set of coupled equations. The
details of many of these interactions are unknown, and are the subject of current
research.

Figure 6.9 Buried amorphous layer in silicon created by 200-keV argon ions. (Courtesy Marcus [2]).
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There is a project at Stanford to develop the mathematics of these interactions, and
to develop computer programs to predict the resulting dopant distributions. The com-
puter program is Stanford University Process Engineering Module (SUPREM), and
the current version is SUPREM V. The program is continuously updated to improve
the accuracy, and to take into account more sophisticated understanding of defect
interactions on the diffusion process. The computer program can also be used to
calculate oxide layer growth. Information about commercial versions of SUPREM
can be found on the internet.

6.4

Rutherford Backscattering

Rutherford backscattering (RBS) provides a convenient tool for determining the loca-
tion of implanted dopants. RBS can also be used to estimate the degree of damage to a
crystal and to locate buried amorphous layers created by the implantation process. The
method consists of impinging a beam of helium ions onto the substrate, and then
measuring the energy distribution of the ions that are backscattered from the sub-
strate. The energy that is lost by a helium ion when it is scattered by the nucleus
of an atom in the substrate depends on the mass of the nucleus, and on the scattering
angle.

Both the total energy and the total momentum are conserved in the collision. For
example, if the incident ion and the nucleus it strikes have the exactly same mass, then
in a direct collision the incident ion will stop and the nucleus will depart with the
velocity of the incident ion. This preserves both energy and momentum. If the inci-
dent ion has a larger mass than the target nucleus, both will continue in the direction
of the incident ion. If the incident ion has a smaller mass than the target nucleus, then
the incident ion bounces backward, that is, it will be backscattered. Helium ions are
backscattered from everything except hydrogen. Of course, there is an angular varia-
tion in the scattering, depending on how the incident ion strikes the target nucleus.
But in RBS, the detector for the backscattered helium ions is placed so that only the
ions that are backscattered more or less straight back are counted, and so the back-
scattered angle is fixed.

The more massive the target nucleus, the greater will be the energy of the backscat-
tered helium ion. The difference between the energy of the incident ion and its energy
when it is backscattered is an energy loss. This energy loss is greater for scattering
from light atoms than from heavy atoms.

Figure 6.10 Scattering

of an ion of mass M1 by

a nucleus of mass M2.
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Silicon is a relatively light atom, and so an incident helium ion loses a fairly large
amount of energy on backscattering from a silicon nucleus.

So there is a specific amount of energy that a helium ion can lose on being back-
scattered from silicon at a given angle. A helium ion can also lose energy, for example
by electron interactions, if it penetrates into the silicon, scatters from a silicon nucleus,
and then comes back out. So an ion that is backscattered by a silicon atom that is below
the surface will have lost more energy that an ion backscattered from a silicon atom at
the surface of the sample. This means that there is a silicon edge in the energy-loss
spectrum. And similarly for other elements.

The only way for a helium ion to have an energy loss that is less than the silicon edge
is to be backscattered from a heavier atom, and thus the presence of heavier atoms can
be detected in the energy loss region before the silicon edge.

The energy loss due to scattering from any particular type of atom at the surface is
known, but the helium ion will also lose extra energy due to electronic interactions if
the heavier atom is not at the surface. This loss is known as a function of depth. The
depth distribution of a particular species of dopant atom can thus be determined.

The energy-loss spectrum from a silica sample that was implanted with germanium
is shown in Fig. 6.11. The energy of the incident helium ions was 2 MeV. The peak at
about 1.6 MeV is scattering from the implanted germanium, the silicon edge is at
about 1.2 MeV, and the oxygen edge is at about 750 keV.

In order to make a measurement like this, the sample is usually oriented in a non-
channeling direction.

Figure 6.11 Energy-loss spectrum for germanium implanted into silica. (Courtesy Minke [3]).

6 Ion Implantation68



6.5

Channeling

Ions can “channel” down the open spaces in a lattice, such as those illustrated in
Fig. 6.12, if they are incident in the right direction. There is a steering effect due
the atoms along the sides of the channel that tends to keep the ion in the channel.

When a silicon crystal is irradiated in a channeling direction, there will be scattering
from the first atom in each column of atoms, but the incident ions that do not strike a
surface atom will tend to proceed down the open channels, although they will still lose
energy due to electronic interactions. Typical backscattering channeling yield from a
perfect crystal is shown in Fig. 6.13. The data labeled virgin crystal has a peak due to
scattering from silicon atoms at the surface. The rest of the ions disappeared down the

Figure 6.12

Channels in silicon.

Figure 6.13 Energy-loss spectrum

from a perfect crystal in a channeling

and in a random direction, and from

a crystal that was damaged by boron

ion implantation. (After Morehead,

Chowder [4]).
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channels and were not scattered back to the detector. So it appears that there were
silicon atoms only at the surface.

By contrast, the backscattering data from the randomly oriented sample in Fig. 6.13
indicates that ions were scattered from atoms throughout the crystal. This illustrates
the difference in yield between a channeling and a random incident direction.

Channeling can be used to evaluate the perfection of a crystal, since the distance a
channeling ion can penetrate into a crystal depends on its perfection. The center curve
in Fig. 6.13 was taken in the channeling direction, after implantation with boron. The
backscattered yield has increased significantly over that from the virgin crystal, due to
the damage to the crystal structure created by the implant, but it is still significantly
less than scattering from the randomly oriented sample. The difference provides in-
formation about the degree of damage.

An ion in a channel is unlikely to have a nuclear collision, and it samples a lower
electron density, so it penetrates much more deeply into the sample than an ion that is
incident in a random direction. Even with a random incident direction, some of the
ions will be scattered into a channel, and so there are some ions that penetrate much
more deeply into the sample than the average end of range. This creates a spread in the
end of range where the implanted ions end up.

If there is a buried amorphous layer, the backscattering from the amorphous region
will be similar to scattering from a randomly oriented crystal, as illustrated in Fig. 6.14.
The location of a buried amorphous layer can be detected using channeling ions that
are backscattered from the amorphous layer.

Figure 6.14 Energy-loss spectrum from a buried amorphous layer.

(After Thompson et al. [5]). Some of the atoms appear to be outside of

the surface due to instrument broadening.

6 Ion Implantation70



The energy-loss spectrum in Fig. 6.14 is from a sample implanted with various doses
of indium which have created amorphous layers of various thickness in the silicon.
Only the surface peak is present in the virgin sample, since the helium ions were
incident in the <111> direction and most of them channeled into the silicon. The
backscattering in the channeling direction increases dramatically with the implanta-
tion dose as the amorphous layer thickens. The backscattering from the amorphous
layer in the indium-implanted sample in Fig. 6.14 is similar to the yield from a random
sample. This is unlike the backscattered yield from the boron-implanted sample in
Fig. 6.13, where the yield from the implanted sample is significantly below the yield
in a random orientation. This indicates that the boron implantation resulted in a da-
maged crystal, rather creating an amorphous layer.

6.6

Silicon-on-Insulator

A thin layer of silicon, about 0.1 to 1 micrometer thick, on top of an insulating layer
provides a substrate with superior properties for the fabrication of many semiconduc-
tor devices. This configuration reduces leakage currents, provides improved electrical
characteristics, and removes the necessity for a deep-trench isolation, which is used to
eliminate latchup.

Figure 6.15 SIMOX silicon-on-insulator.

(After Pinizzotto [6]).
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There are three methods currently used to make SOI, and two of them involve ion
implantation. Silicon implanted with oxygen (SIMOX) involves the implantation of a
wafer with a heavy dose of oxygen. The wafer is then annealed, producing a buried
layer of SiO2. The silicon above the buried oxide layer, which is where the devices will
be made, retains significant damage from the implantation.

Figure 6.15 shows a buried silica layer produced by SIMOX. A layer of epi silicon has
been deposited on the top silicon layer. There are heavily damaged regions both above
and below the oxide.

The method called Smart Cut uses hydrogen ion implantation. After implantation, a
layer of oxide is grown, then a thick layer of polysilicon is deposited to provide me-
chanical support. The wafer is then annealed, so that the hydrogen precipitates as gas
bubbles. This splits off a thin layer of silicon from the original wafer. Devices can then
be fabricated in this layer. The thin layer of silicon, which split off from the wafer, is
now supported by the polysilicon, but separated from it by an oxide layer. This method
also produces a damaged silicon layer on an insulator.

The third method is called wafer bonding. A p-type layer is created at the surface of
an n-type wafer by in-diffusion of an appropriate dopant. The wafer is oxidized, and
then bonded to another oxidized wafer. The n-type silicon is then removed from the
first wafer, leaving the p-type layer on top of the oxide, supported by the second wafer.
This is done with mechanical polishing, followed by etching with an etch that removes
n-type silicon faster than p-type silicon. For a wafer that is initially 600-lm thick, stop-
ping within a micrometer of the other side is tricky. Although the selective etch helps,
there is still some variability in the final thickness of the layer, as well as in the uni-
formity of its thickness .

None of these are ideal methods. Two produce defective layers having a well-con-
trolled thickness, and the third produces a good quality silicon layer, but has poor
thickness control. All three of these methods are used in production by different man-
ufacturers of ICs.
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Problems

1. Discuss the energy losses experienced by an ion incident on a crystal.
2. Discuss the damage generated by ions incident on a crystal.
3. Write a report of six pages on the preparation of silicon-on-insulator wafers.
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Chapter 7

Mathematics of Diffusion

7.1

Random Walk

The diffusion of atoms on a lattice occurs by the random motion of atoms from
lattice site to lattice site. Insight into this process can be gained by examining the
motion of a random walker in one dimension. In one dimension, a random walker
makes steps of equal length to the left or to the right in a random sequence. The
probability distribution for where a walker ends up after a given time will be derived
in this section. In the following section, the diffusion equation will be derived and
then a solution to the diffusion equation will be shown to provide this same distribu-
tion.

Consider a random walker making steps randomly to the left or to the right. Each
step is of length a. After N steps, the final displacement of the walker from its initial
position is:

RN ¼ a1 þ a2 þ a3 þ a4 þ . . .þ aN ð7:1Þ

where each step, ai, is of length a, and either to the right, þa, or to the left, –a. Plus or
minus steps are equally probable, so that on average, the walker moves neither to the
left nor to the right. The average value of the final displacement is zero:

RN ¼ 0 ð7:2Þ

Although the average final position is zero, not all of the walkers will end up precisely
at zero. There will be a spread in their final positions. A measure of this spread can be
obtained from the square of RN, which is not zero:

R2
N ¼ Na2 þ

X
i 6¼j

aiaj ð7:3Þ

The first term comes from multiplying each term in Eq. 7.1 by itself, which gives
a positive term in each case. The second term is the sum of the products of each
term with all the other terms. These terms are randomly positive and negative, since
there are only four possible combinations of pluses and minuses: þþ, ��, þ�, and
�þ. The first two result in a positive term, and the second two in a negative term.
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For random positive and negative steps, each of these is equally probable, and so
the summation term is zero on average. So the average value of RN

2 is:

R2
N ¼ Na2 ð7:4Þ

and the root mean square displacement is:

ffiffiffiffiffiffi
R2

N

q
¼

ffiffiffiffi
N
p

a ð7:5Þ

The r.m.s. displacement is proportional to the square root of the number of steps.
Writing the number of steps as the jump rate, �, times the time, t: N ¼ �t, the final

displacement can be related to the diffusion coefficient. For diffusive motion in one
dimension (see Eq. 4.5),

D ¼ 1

2
a2� ¼ a2N

2t
¼ R2

N

2t
ð7:6Þ

In three dimensions, N ¼ 6Dt/a2, so that

D ¼ 1

6
a2� ¼ a2N

6t
¼ R2

N

6t
ð7:7Þ

The final position of the walker can be analyzed in more detail, as illustrated in
Table 7.1.

The walker moves horizontally, starting at 0, and the probability of its being at any
position, R, after each time step is shown in each successive row. The location of each
walker is Ra, where R is the number in the first row of the table, and a is the length of
each step. After one step, the walker moved either left or right one step, so the prob-
ability that the walker is one step to the right is 1/2, and the probability that it is one step
to the left is also 1/2. After two steps, there is 1/2 probability that the walker that moved
one step to the right at the first step will move a further step to the right, and 1/2

probability that it will step to the left, returning to the starting position. Similarly,
there is 1/2 probability that the walker that moved one step to the left at the first
step will move a further step to the left, and 1/2 probability that it will step to the
right, returning to the starting position. So there is 1/4 probability that R is equal
to þ2 or –2, and 1/2 probability that R ¼ 0. The probabilities after each step are given

Table 7.1 The probability that a walker that starts at position 0 will be in

various positions to the left or right of its starting position after making

steps randomly to the left or right.

R –4 –3 –2 –1 0 +1 +2 +3 +4

Starting position 1

After 1 step 1/2
1/2

After 2 steps 1/4
2/4

1/4

After 3 steps 1/8
3/8

3/8
1/8

After 4 steps 1/16
4/16

6/16
4/16

1/16
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by the binomial expansion, divided by 2N, where N is the number of steps. The normal-
izing factor, (1/2)N, assures that the total probability that the walker is somewhere is
equal to 1, which is given by the sum of the numbers in each row.

The probability distribution given by the table after N steps is given by the normal-
izing factor, (1/2)N, times the standard binomial expansion:

P ¼ 1

2N

N!

Nþ R

2

� �
!

N� R

2

� �
!

ð7:8Þ

Using ln N! � ðNþ 1Þ ln N� Nþ ðln 2pÞ=2, which is more accurate than the usual
Stirling approximation, and using lnð1� R=NÞ � �R=N� ðR=NÞ2=2, after some al-
gebra, Eq. 7.8 becomes:

P ¼
ffiffiffiffiffiffiffiffiffi

1

2pN

r
exp � R2

2N

� �
ð7:9Þ

This result can be compared with the corresponding solution to the diffusion equation,
Eq. 7.19 (see problem 2).

7.2

The Diffusion Equation

The diffusion equation is derived from Fick’s first law by adding conservation of
matter [1].

The flux across a plane is given by Fick’s first law, Eq. 2.5, as:

J ¼ �D
dC

dx
ð7:10Þ

The number of atoms crossing an area A of a plane in time Dt is:

A�t J ¼ �A�tD
dC

dx
ð7:11Þ

Figure 7.1 Flux of atoms across two planes of area A

separated by Dx.

7.2 The Diffusion Equation 7777



The difference between the number of atoms crossing plane 1 and plane 2 in time Dt
is:

A�tD
dC

dx

� �
2

� dC

dx

� �
1

� �
ð7:12Þ

This difference must equal the net change in the number of atoms in the volume
between the two planes, which is DCADx, where DC is the change in the number
of atoms per unit volume:

A�tD
dC

dx

� �
2

� dC

dx

� �
1

� �
¼ �CA�x ð7:13Þ

which can be rewritten as:

D
dC

dx

� �
2

� dC

dx

� �
1

� �

�x
¼ �C

�t
ð7:14Þ

Going to the limit of small Dx and small Dt, this becomes:

D
@2C

@x2
¼ @C

@t
ð7:15Þ

This is the time-dependent diffusion equation for a one-dimensional flux. In three
dimensions, this becomes:

Dr2C ¼ @c

dt
ð7:16Þ

where r2 is the Laplacian operator, defined as:

r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
ð7:17Þ

Heat flow is also described by the diffusion equation. The heat flux in a temperature
gradient is given by:

J ¼ �k
dT

dx
ð7:18Þ

Here k is the thermal conductivity in units such as cal/cm s 8C. This differs from
Fick’s first law in that the temperature gradient is given in degrees per centimeter,
say, whereas the heat flux is in calories/cm2 s. When the diffusion equation, Eq.
7.16, is used for thermal diffusion, the thermal diffusivity j replaces D. Both j
and D have the same dimensions, such as cm2 s�1. Instead of the conservation of
mass as in the analysis above for chemical diffusion, for heat flow, energy is con-
served. This requires that the difference between the heat flux into and out of a
volume element raises the temperature by an amount that depends on the specific
heat per unit volume, and so the relationship between the thermal conductivity
and the thermal diffusivity is j ¼ k/Cq, where C is the specific heat and q is the
density.
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7.3

Solutions to the Diffusion Equation

7.3.1

Gaussian Concentration Distribution

For simple geometries, there are analytical solutions to the diffusion equation. For
example, there is a book by Carslaw and Jaeger [2] entitled “The Conduction of
Heat in Solids”, which contains analytical solutions to the diffusion equation in a
variety of geometries. The problems are posed as heat flow problems, and so the solu-
tions are stated in terms of thermal diffusion, but the solutions can be applied to mass
diffusion problems, simply by replacing the thermal diffusivity with the chemical
diffusivity.

7.3.1.1 Gaussian Distribution in One Dimension

The partial differential equation for time-dependent diffusion in one dimension, Eq.
7.15, can be solved for the case where the starting condition is a layer of atoms of some
species in a plane at x ¼ 0, and zero concentration everywhere else. The formal solu-
tion has the form:

Cðx; tÞ ¼ A

2
ffiffiffiffiffiffiffiffi
pDt
p exp � x2

4Dt

� �
ð7:19Þ

where A is the total number of diffusing atoms per unit area in the initial layer. This
distribution is known as a Gaussian. There is a finite concentration at x ¼ 0 that
changes with time, and the concentration is zero at x¼+1. This solution is relatively
difficult to derive, but it can be verified readily that this is a valid solution. Since

Z1

�1

exp � x2

4Dt

� �
dx ¼ 2

ffiffiffiffiffiffiffiffi
pDt
p

ð7:20Þ

the total amount of the diffusing component is:

Z1

�1

Cðx; tÞdx ¼ A ð7:21Þ

The total number of diffusing atoms can also be written as C0l, where C0 is the
concentration in atoms/cm3 in a layer that has a thickness l. The Gaussian solution
is valid in this case after the diffusion process has proceeded long enough so that

ffiffiffiffiffiffiffiffi
2Dt
p

>> l.
Figure 7.2 illustrates the initial condition and the Gaussian profile at two subsequent

times. The concentration at x ¼ 0 decreases with time, and is proportional to 1/
ffiffiffiffiffi
Dt
p

.
The width of the concentration distribution increases with time, and is proportional
to

ffiffiffiffiffi
Dt
p

. The area under the curve is the total number of atoms in the sample, and it
stays constant in time.
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When a thin layer of composition C0 atoms/cm3 and thickness l is deposited on a
surface, as illustrated in Fig. 7.3, and all the deposited material diffuses into the sub-
strate, the total amount of material in the substrate stays constant.

The concentration profile in this case will also be Gaussian after enough time has
elapsed. The mathematical solution applies only for x > 0. The Gaussian solution has
zero slope at x ¼ 0, implying that there is no diffusion flux across the plane at x ¼ 0.

Figure 7.2 Gaussian diffusion profile. The hatched area indicates the

total amount of dopant in the sample, which remains constant.

Figure 7.3 Diffusion in from a surface.
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In this case, since all of the deposited material diffuses into the substrate, the con-
centration profile in the substrate is:

Cðx; tÞ ¼ C0lffiffiffiffiffiffiffiffi
pDt
p exp � x2

4Dt

� �
ð7:22Þ

Since

Z1

0

exp � x2

4Dt

� �
dx ¼

ffiffiffiffiffiffiffiffi
pDt
p

ð7:23Þ

The total amount of material deposited on the substrate, C0l atoms/cm2 is the total
amount of material in the diffusion profile.

For analysis of the dopant distribution following ion implantation, C0l is replaced
with Q, the total number of atoms/cm2 implanted into the sample. The Gaussian
solution is valid after a time that is long enough so that

ffiffiffiffiffiffiffiffi
2Dt
p

is large compared
to the implantation depth.

Equation 7.22 is the formal solution for the concentration profile during a diffusion
drive-in anneal.

It is valid when the annealing time is long compared to the time it takes for all the
original deposited or implanted material to diffuse into the sample. This formal solu-
tion assumes that the diffusion coefficient is constant, that there are no effects of
clustering, and no variations in defect density. If any of these conditions are not
met, a more complex analysis must be done, for example, using the SUPREM pro-
gram.

7.3.1.2 Cylindrical Coordinates

The concentration profile in a cylinder or sphere that results from an initial concen-
tration located at x¼ 0 also has a Gaussian shape. For a circle or a cylinder, the solution
is two-dimensional, and is independent of position along the z-axis, as illustrated in
Fig. 7.4.

In cylindrical coordinates, r2 ¼ x2 þ y2, and the diffusion equation becomes:

@2C

@r2
þ 1

r

@C

@r
¼ @C

@t
ð7:24Þ

Figure 7.4 Diffusion in cylindrical coordinates, from a line of

atoms initially at the center of the cylinder.
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For a total amount of a second component, Q atoms/cm, initially along the axis of the
cylinder, the solution takes the form:

C ¼ Q

4pDt
exp � r2

4Dt

� �
ð7:25Þ

7.3.1.3 Spherical Coordinates

In spherical coordinates, Fig. 7.5,
r2 ¼ x2 þ y2 þ z2, the diffusion equation becomes:

@2C

@r2
þ 2

r

@C

@r
¼ @C

@t
ð7:26Þ

For a total number, Q, of atoms of second component initially at the center of the
sphere, the solution takes the form:

C ¼ Q

ð4pDtÞ3=2
exp � r2

4Dt

� �
ð7:27Þ

Both of these profiles preserve the total number of atoms, and have a Gaussian shape,
similar to the diffusion of a fixed total number of atoms diffusing into a sample from
its surface.

7.3.2

Error Function Concentration Distribution

The other important solution to the one-dimensional diffusion equation is used when
the surface concentration stays constant, as during deposition onto the surface, that is
during pre-dep. The solution in this case is given by the complementary error function:

Cðx; tÞ ¼ CS erfc
x

2
ffiffiffiffiffi
Dt
p

� �
ð7:28Þ

where the complementary error function is defined in terms of the error function as:

erfcðzÞ ¼ 1� erf ðzÞ ð7:29Þ

Figure 7.5 Diffusion in spherical coordinates, of atoms initially at

the center of the sphere.
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and the error function is an integral of the Gaussian probability distribution function:

erf ðzÞ ¼ 2ffiffiffi
p
p
Zz

0

expð�g2Þdg ð7:30Þ

These functions are important in statistical analysis, which is where the name comes
from.

Figure 7.6 illustrates the error function and the complementary error function.
For our case, the argument z in Eq. 7.30 is x/2

ffiffiffiffiffi
Dt
p

.
The flux into the surface depends on the concentration gradient at the surface, and

this decreases with time:

JX¼0 ¼ �D
dC

dx

� �
X¼0

¼
ffiffiffiffiffi
D

pt

r
CS ð7:31Þ

The same formal solution applies for a diffusion couple, where the two dissimilar
materials are joined at x ¼ 0, as illustrated in Fig. 7.7.

Figure 7.6 The error function and the complementary error function.

Figure 7.7 Diffusion profile for a diffusion couple.
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The concentration at the interface is initially half-way between the concentrations on
either side, and stays there (if we ignore the Kirkendall effect). So the concentration
profile in each half of the couple is given by an error function. The concentration to the
right in the figure is a complementary error function, starting at C¼ 0.5 at�¼ 0, and
increasing to C ¼ 1 at � ¼ 1. On the left-hand side the concentration profile is a
complementary error function with a negative argument, starting at C ¼ 0.5 at
� ¼ 0, and decreasing to C ¼ 0 at � ¼ –1.

Both the Gaussian and the error function solutions are valid only if the concentra-
tions at infinity do not change with time.

The arguments for both the Gaussian and the error function solutions involve x2/Dt,
or equivalently, x/

ffiffiffiffiffi
Dt
p

. This group of variables is dimensionless. For any diffusion
problem, always look at its value before starting the analysis.ffiffiffiffiffi

Dt
p

is a length, known as the diffusion distance. If
ffiffiffiffiffi
Dt
p

is large compared to the
distances involved, such as the sample thickness, then the concentration will be uni-
form throughout the thickness after time t. If, and only if,

ffiffiffiffiffi
Dt
p

is small compared to
the sample thickness, so that the other side of the sample is effectively at infinity, then
a Gaussian or error function solution, if appropriate, may be used.

Alternatively, if the distance in the problem is known, then the time for diffusion
over that distance, x2/D, should be considered. x2/D is a time, and if the available time
is long compared to this time, then the concentration will be uniform over the distance
x. On the other hand, if the time for diffusion is short compared to the time available,
then the concentration distribution will not be uniform throughout the distance x, and
so a Gaussian or error function solution, if appropriate, may be used.

7.3.3

p/n Junction Depth

When a dopant is diffused into a substrate that is uniformly doped at a concentration
Cb with dopant of the opposite carrier type, a p/n junction will be formed where the
concentration of the in-diffusing dopant equals the concentration of the substrate do-
pant. Traditionally, a p/n junction is formed during the drive-in anneal of the semi-
conductor. In this case, a Gaussian concentration profile, as given by Eq. 7.22 is devel-
oped. A p/n junction is formed where the concentration of the in-diffusing dopant is
Cb. The junction depth xj is given by:

Cb ¼ Cðx; tÞ ¼ Qffiffiffiffiffiffiffiffi
pDt
p exp �

x2
j

4Dt

 !
ð7:32Þ

So that:

xj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt ln

Q

Cb

ffiffiffiffiffiffiffiffi
pDt
p

 !vuut ð7:33Þ

Where Q is the total amount of dopant per square centimeter diffusing into the
sample.

7 Mathematics of Diffusion84



7.3.4

Separation of Variables

7.3.4.1 Concentration at the Surface is Specified

For diffusion of a dopant into a wafer from the surface with a constant composition at
the surface, the concentration profile in from the surface is given by the complemen-
tary error function, provided that the diffusion time is short enough so that

ffiffiffiffiffiffiffiffi
2Dt
p

<< l,
where l is the thickness of the wafer. For long times,

ffiffiffiffiffiffiffiffi
2Dt
p

>> l, the concentration in
the wafer will be uniform. In between these two limits, where

ffiffiffiffiffiffiffiffi
2Dt
p

� l, we need a
different solution.

The solution for this case is formally the same as the solution for outgassing of a
slab, where there is initially a uniform concentration of a second component in the
slab, but the concentration at the surface of the slab is zero, as illustrated in Fig. 7.8.

The rate at which the second component leaves the slab is controlled by diffusion of
the second component to the surface of the slab. This is a one-dimensional problem,
and the diffusion process is described by Eq. 7.15:

D
@2C

@x2
¼ @C

@t
ð7:34Þ

The method of separation of variables consists of looking for a solution of the form:

Cðx; tÞ ¼ XðxÞ � TðtÞ ð7:35Þ

where X(x) is a function only of x, and T(t) is a function only of t.
So that:

@C

@t
¼ XðxÞ � d

dt
TðtÞ ð7:36Þ

and

@2C

@x2
¼ TðtÞ � d2

dx2
XðxÞ ð7:37Þ

The Gaussian and error functions that were discussed above are not solutions of this
type.

Figure 7.8 Initial composition profile in slab.
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The differential equation becomes:

D
d2XðxÞ

dx2
� TðtÞ ¼ XðxÞ dTðtÞ

dt
ð7:38Þ

which can be rewritten as:

1

XðxÞ
d2XðxÞ

dx2
¼ 1

D

1

TðtÞ
dTðtÞ

dt

� �
¼ �k2 ð7:39Þ

Since the X(x) is independent of time, and the T(t) is independent of x, the two must be
equal to a constant. The constant we will take to be –k2. And so the partial differential
equation splits into two ordinary differential equations:

d2XðxÞ
dx2

þ k2XðxÞ ¼ 0 ð7:40Þ

and

dTðtÞ
dt
¼ �k2DtðtÞ ð7:41Þ

which have formal solutions:

XðxÞ ¼ A cosðkxÞ þ B sinðkxÞ ð7:42Þ

TðtÞ ¼ T0 expð�k2DtÞ ð7:43Þ

The constants A, B, T0, and k can be chosen to fit the boundary conditions.
Any k provides a valid solution so we can write a formal solution as a sum of terms

with all possible values of k:

Cðx; tÞ ¼
X

k

Ak cosðkxÞ þ Bk sinðkxÞ
� �

expð�k2DtÞ
� 	

ð7:44Þ

In this form, the constant T0 is redundant. For our outgassing problem, the concen-
tration at the two surfaces of the slab is zero at all times, so that C(0,t) ¼ 0, which
means that there can be no cosine terms in our solution, so A ¼ 0. We can make
C(l,t) ¼ 0 by setting k ¼ np/l, where n is an integer, which will make all the sine
terms equal to zero at x ¼ l.

Cðx; tÞ ¼
X

n

Bn sin
npx

l


 �
exp � np

l


 �2
Dt

� �
ð7:45Þ

The essence of the method of separation of variables is that the initial concentration
profile at t ¼ 0 can be fitted as a boundary condition, and then the X(x) part of the
formal solution does not change in time. All of the time dependence is in T(t). We
can represent any form of initial concentration in the range 0 to l as a Fourier ser-
ies, that is, as a summation of sine and/or cosine terms, as illustrated in Fig. 7.9.
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The trick to doing this is outlined below. For any arbitrary function �(x) defined
between 0 and l, we can write formally:

�ðxÞ ¼
X1
i¼1

Gi sin
ipx

l

� �
ð7:46Þ

In order to determine the Gis, note that:

Z l

0

sin2 npx

l


 �
dx ¼ 1

2
ð7:47Þ

and

Z l

0

sin
npx

l


 �
sin

mpx

l

h i
dx ¼ 0 for m 6¼ n ð7:48Þ

so if we multiply both sides of Eq. 7.46 by (2/ l)sin(mpx/l), and integrate between 0 and
l, then all of the terms in the series are zero except for the one containing m, and that
term is equal to Gm. So that:

2

1

Z l

0

�ðxÞ sin
mpx

l


 �
dx ¼ Gm ð7:49Þ

If the integral can be evaluated, then we obtain the value of Gm.
For our outgassing problem, �(x) ¼ C0, is a constant, so the integral can be readily

evaluated.

Figure 7.9 Representation of the original concentration

profile as a sum of sine terms.
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Bn ¼
2C0

l

Z l

0

sin
npx

l


 �
dx

¼ � 2C0

np
cos

npx

l


 �h il

0
ð7:50Þ

For n even, cos(npx/l) ¼ 1 for both x ¼ 0 and for x ¼ l, so Bn ¼ 0 for even values of n.
For n odd, cos(npx/l)¼ 1 for x¼ 0 and cos(npx/l)¼ –1 for x¼ l, so the square bracket

is equal to 2, and Bn ¼ 4C0/np for odd values of n. We can replace n with 2iþ1, which
makes i¼ 0, 1, 2, 3, .... correspond to n¼ 1, 3, 5, 7, ...., so that a summation over i will
contain only the terms where n is odd.

Bn ¼
4C0

np
¼ 4C0

pð2iþ 1Þ ð7:51Þ

And our final solution becomes:

Cðx; tÞ ¼ 4C0

p

X1
i¼0

1

2iþ 1
sin
ð2iþ 1Þpx

l

� �
exp � ð2iþ 1Þp2

l

� �2

Dt

" #
ð7:52Þ

The shorter wavelength terms in the series decay faster. The term for i ¼ 0 decays as
exp[–(p/l)2Dt], and the second term, in which i¼ 1, decays as exp[–9(p/l)2Dt], which is
nine times faster. After some time, only the i ¼ 0 term is left:

Cðx; tÞ ¼ 4C0

p
sin

px

l


 �
exp � p2Dt

l

� �
ð7:53Þ

So the concentration profile in the slab starts off with a steep concentration rise at the
surface. As diffusion proceeds, the corners of the profile become rounded, as de-
scribed by an error function. Then, after some time, the profile becomes a simple
sine function, as shown in Fig. 7.10, which decays in time until the profile is flat.

For the diffusion into a wafer that has an initial concentration of zero in the wafer
but a constant surface concentration, C0, of the diffusing species, the concentration
profile has the same mathematical form, and the solution will be C0 – C(x, t), where
C(x, t) is given by Eq. 7.52.

Figure 7.10 Composition profile after some

time, when only one sine term is left.
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7.3.4.2 Flux Specified at Surface

A diffusion problem is well defined if the concentration or flux is known at all the
surfaces. The separation of variables method can also be used if the initial boundary
condition describes the flux into the surface of the sample. The diffusion flux into the
sample can be written as: J ¼ –D(dC/dx), so that the derivative of the general solution
for the concentration, Eq. 7.44, can be taken,

dCðxÞ
dx
¼ k

X1
k¼0

�Ak sinðkxÞ þ Bk cosðkxÞ
� �

exp½�k2Dt�
� 	

ð7:54Þ

and then fitted with a Fourier series.

7.3.4.3 Cylinder

Formal solutions can be obtained for diffusion into or out of a cylinder using the
separation of variables method. The radial part of the solution is expanded in terms
of Bessel functions, rather than sines and cosines. Figure 7.11 contains a sketch of
two Bessel functions.

They are rather similar to sines and cosines, except that the amplitude decreases
with distance from the origin. They have zeros between the zeros of sines and cosines.

7.3.4.4 Sphere

Formal solutions can also be obtained for diffusion into or out of a sphere using the
separation of variables method. The radial part of the solution is expanded in terms of
Legendre polynomials. The first few Legendre polynomials are:

P0ðxÞ ¼ 1

P1ðxÞ ¼ x

P2ðxÞ ¼ ð3x2 � 1Þ=2

P3ðxÞ ¼ ð5x3 � 3xÞ=2

P4ðxÞ ¼ ð35x4 � 30x2 þ 3Þ=8

P5ðxÞ ¼ ð63x5 � 70x3 þ 15xÞ=8

..

.

Figure 7.11 Bessel functions.
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In general, formal solutions can be found only for simple geometries, such as a plane,
a cylinder or a sphere. The time-dependent solutions for even these cases can be quite
complex. Mel Lax, a formidable mathematician, observed that after he had found a
formal solution to a problem in terms of an infinite series of Bessel functions,
that as much computer time was required to evaluate the series as to evaluate the
solution numerically directly from the differential equations.

Numerical solutions will be discussed in the next section.
Unless there are sources or sinks inside a sample, there can be no extrema in the

concentration field inside the sample. This can be proven mathematically, but physi-
cally it is just a consequence of the fact that diffusive motion is due to atoms jumping
around randomly, which is an averaging process, which precludes the possibility of
getting a bump or a depression inside the sample.

7.4

Numerical Methods

Numerical methods can be used for solving differential equations. This is done by
using finite increments for time and distance, rather than the infinitesimal incre-
ments used in the differential equation.

There are two principal schemes for numerical analysis, finite difference and finite
element. In finite difference analyses, the grid size (increment size) is made small
enough so that a valid solution can be obtained. Usually the mesh size is kept the
same everywhere in the solution. The solution is either propagated in time from initial
conditions, or interpolated between boundary conditions. We are going to go through a
finite difference calculation below.

Finite element analysis is a more complex scheme that is usually used only for large
problems, because it is more difficult to set up. It makes use of the fact that solutions to
problems often have some regions where the variables are changing rapidly, and other
regions where they are changing slowly. And so a different size of grid is used in
different regions. But this scheme requires defining the grid carefully, and the calcu-
lations are more complex where the grid size changes. Often, a great deal of effort is
expended on designing the grid. There are now computer programs to help with the
task of grid design. Finite element methods also make use of higher-order approxima-
tions for calculating values at grid points, so that the mesh can be made coarser, while
still retaining accuracy of the calculation. Finite elements methods are used, for ex-
ample, for accurate stress analyses, and for time-dependent fluid flows.

The book Numerical Recipes by W. H. Press, S. A. Terkosky, W. T. Vetterley, and B. P.
Flannery [3] contains a large variety of numerical solutions for various conditions. The
book outlines the mathematics behind each equation, and presents computer code for
solving the equations numerically. There are versions for Fortran, C and Basic. Floppy
discs containing the code are available.
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7.4.1

Finite Difference Method for Diffusion

Using xj¼ jDx and tn¼ nDt, the one-dimensional time-dependent diffusion equation:

D
@2C

@x2
¼ @C

@t
ð7:55Þ

Can be converted into a difference equation:

D
Cðxjþ1; tnÞ � 2Cðxj; tnÞ þ Cðxj�1; tnÞ

ð�xÞ2

" #
¼

Cðxj; tnþ1Þ � Cðxj; tnÞ
ð�tÞ

� �
ð7:56Þ

This is just the formal definition of the derivatives written in terms of finite incre-
ments, as was done in the derivation of Eq. 7.14, rather than in the form of the differ-
ential equation, which implies infinitesimal increments.

This equation can be rearranged:

Cðxj; tnþ1Þ ¼ Cðxj; tnÞ þ
D�t

ð�xÞ2
Cðxjþ1; tnÞ � 2Cðxj; tnÞ þ Cðxj�1; tnÞ
h i

ð7:57Þ

The term on the left-hand side is for time tn+1 and all the terms on the right-hand side
are for time tn, so that the configuration for the next time increment, nþ1, can be
calculated from values in the previous time increment, n.

Stable solutions for this difference equation are obtained for:

D�t=ð�xÞ2 � 1=2 ð7:58Þ

For the special case:

D�t=ð�xÞ2 ¼ 1=2 ð7:59Þ

the equation above takes the simple form:

Cðxj; tnþ1Þ ¼
Cðxjþ1; tnÞ þ Cðxj�1; tnÞ
h i

2
ð7:60Þ

7.4.2

Initial Surface Concentration Boundary Conditions

The concentration as a function of time can be calculated using a spreadsheet by writ-
ing the concentration profile at t¼ 0 into the first row, and then using Eq. 7.57 or 7.60
to calculate the concentration profiles at subsequent times. The same equation can be
copied into each cell of the spreadsheet except for the boundaries. For example, for the
outgassing problem discussed above, the concentration is zero at x¼ 0 and at x¼ l for
all times.

The concentration at t ¼ 0 everywhere inside the slab has the same value, so this is
arbitrarily set to 1 in Table 7.2. This value is inserted in the row at t ¼ 0. The value of
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either Dx or Dt can be chosen arbitrarily to provide a fine enough mesh for the calcula-
tion, and then the other increment can be calculated so that Eq. 7.58 is satisfied.

For example, for D¼ 10�5 cm2 s�1, if we are asked to find the composition in a 1-mm
thick slab after 40 s, the diffusion distance after 40 s will be

ffiffiffiffiffi
Dt
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�5 � 40
p

¼
0.02 cm ¼ 0.2 mm. We can expect that the composition will change well into the
slab, which is 1 mm thick. We can choose Dx ¼ 0.001 cm, so there will be 100
data points in thickness of the sample. Then we can choose Dt to satisfy Eq. 7.59:
Dt ¼ (Dx)2/2D ¼ 10�6/2 � 10�5 ¼ 0.05 s. So the data for t ¼ 40 s will be in the
row for which n ¼ 40/0.05 ¼ 800.

This spreadsheet solution will generate a complementary error function (erfc) pro-
file at short times when

ffiffiffiffiffi
Dt
p

<< l ¼ 1mm, and a sine profile when
ffiffiffiffiffi
Dt
p

> 1mm.
Notice that if there is a 1 in only at one position in the first row of table 7.2, say at the

column labeled 5Dx, and if the algorithm of Eq. 7.59 is used to generate the subsequent
rows, then the numbers in Table 7.1 will be generated. The calculation illustrated in
Table 7.2 takes the concentration in each box in the t¼ 0 row, and spreads it out as time
proceeds.

The calculation proceeds similarly for any arbitrary composition profile at t¼ 0. The
initial profile does not need to be analytic or integrable, as is required to carry out a
Fourier analysis, for example, as in Eq. 7.49. An example of an arbitrary initial profile is
discussed in the next section.

7.4.3

Implanted Concentration Profile

It is usual for all the dopant ions that are ion implanted into silicon to stay in the crystal.
None are lost at the surface by evaporation. The flux of dopants to the surface is zero,
since none pass through the surface. The concentration gradient of the dopant at the
surface is zero. The concentration at the surface rises as atoms diffuse there. The total
amount of dopant in the crystal is constant.

The initial as-implanted concentration profile after an ion implantation is usually
represented by:

NðxÞ ¼ Qffiffiffiffiffiffi
2p
p

�Rp

exp � 1

2

ðx � RpÞ
2

ð�RpÞ
2

" #
ð7:61Þ

Table 7.2 Illustrating the method for solving the one-dimensional

time-dependent diffusion equation using a spreadsheet.

x"

t!
0 Dx 2x 3Dx 4Dx 5Dx .. .. .. l–Dx l

0 0 1 1 1 1 1 1 1 1 1 0

Dt 0 0

2Dt 0 0

3Dt 0 0
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where Q is the total number of implanted ions per unit area, RP is the end of range, and
DRP is the straggle. The implanted ions penetrate into the sample a distance that is RP

on average, with a spread about the average depth given by DRP.
The formal analytical solution for the evolution of the concentration in time during

an anneal is complex, but it can be obtained readily by inserting this initial concen-
tration distribution into the first row of the spreadsheet and using a no-flux boundary
condition in the first column, which represents the surface.

7.4.4

Zero Flux Boundary Condition

A zero flux condition at x = 0 can be imposed by making the composition at j¼ –1 the
same as that at j¼þ1, so that there is no net flux through the cells in the column j¼ 0.
Equation 2 for column 0 then becomes:

Cðx0; tnþ1Þ ¼ Cðx0; tnÞ þ
1

2

D�t

ð�x2Þ 2Cðx1; tnÞ � 2Cðx0; tnÞ
� �

ð7:62Þ

The factor 1/2 is introduced because the phantom column at j¼ –1 does not contribute
flux to the concentration in column j ¼ 0. For the special case where

D�t=ð�xÞ2 ¼ 1=2 ð7:63Þ

this equation reduces to the simple form:

Cðx0; tnþ1Þ ¼
Cðx0; tnÞ þ Cðx1; tnÞ
� �

2
ð7:64Þ

This equation can be copied into each cell of the first column of the spreadsheet. For
example, putting a 1 in the (0,0) cell, and 0s in the rest of the first row, with the zero flux
boundary condition in the rest of the first column will generate a Gaussian distribu-
tion, centered at � ¼ 0, and with unit area.

This equation follows the evolution of an initial implant profile, such as Eq. 7.61,
into a Gaussian distribution at times that are long compared to the time RP

2/D, which
the time it takes for the initial implant profile to smooth out.

7.5

Boltzmann–Matano Analysis

The Boltzmann–Matano analysis [4, 5] provides a method for determining the diffu-
sion coefficient when it is concentration dependent, as in Figs. 5.2, 5.4 or 5.5, for
example.

D ¼ DðCÞ ð7:65Þ
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The flux in the diffusion field becomes:

J ¼ �DðCÞ dC

dx
ð7:66Þ

So that the diffusion equation in one dimension takes the more complex form:

@

@x
D
@C

@x

� �
¼ @C

@t
ð7:67Þ

If we define a new variable, z ¼ x/t1/2, then this partial differential equation can be
rewritten as an ordinary diffusion equation.

The derivatives with respect to x and t can be written in terms of derivatives with
respect to z.

@

@x
¼ @z

@x
� @
@z
¼ 1

t1=2

@

@z
@

@t
¼ @z

@t
� @
@z
¼ � x

2t3=2

@

@z
ð7:68Þ

And so Eq. 7.67 can be written:

1

t1=2

@

@z
DðCÞ 1

t1=2

@C

@z

� �
¼ � x

2t3=2

@C

@z
ð7:69Þ

which can be written as an ordinary differential equation, since it contains only the
variable z.

d

dz
DðCÞ dC

dz

� �
¼ � z

2

dC

dz
ð7:70Þ

Integrating once gives:

DðCÞ dC

dz
¼ 1

2

ZC1

C

zdC ð7:71Þ

or:

DðCÞ ¼

ZC1

C

zdC

2
dC

dz

� � ð7:72Þ

For a diffusion couple, where the starting concentrations at t = 0 are: C = C1 for�< 0,
and C = C2 for � > 0, these two concentrations are the values at z = –1 and z = þ1,
respectively. Experimental data can be plotted as shown in Fig. 7.12 as a function of z.

Concentration data should be taken as a function of distance at several different
times. These data should all superimpose when plotted against z if the variations
in D are due to differences in composition. The hatched area in Fig. 7.12 corresponds
to the integral of z as it goes from –1 at C1 to the value of z where the composition is C.

7 Mathematics of Diffusion94



The derivative in the denominator of Eq. 7.72 is obtained from the slope of the curve at
C. The values of the integral and the slope are then inserted into Eq. 7.72 to obtain the
value of the diffusion coefficient at the composition C. The procedure can be repeated
for other compositions. And measurements can be made at a various temperatures to
determine the temperature dependence of D.

Figure 7.12 Boltzmann–Matano plot.
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Problems

1. Discuss the relationship between random walk and diffusion.
2. a) Write a computer program for a one-dimensional random walk, where each

walker makes 100 steps that are randomly þ1 or –1.
Run the program for 500 walkers.
Plot the final positions of the 500 walkers as a histogram (bar graph).

b) For one-dimensional diffusion, the diffusion coefficient is given by D ¼ a2�=2,
where a is the jump distance, and � is the jump rate. What is the relationship
between the parameters for the simulation in question 1 and x, Dt, and No in the
equation in question 3?

c) Compare the distribution of final positions of the walkers from part 2a with:

NðxÞ ¼ aN0ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp

�x2

4Dt

� �

Note that with an even number of jumps, a walker cannot end up on an odd-
numbered site.
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3. A wafer was annealed for 30 min at a temperature where the diffusion coefficient
in silicon of a dopant deposited on the surface is10�8 cm2 s�1. Assuming that the
surface concentration of the dopant remains fixed at 1.0,
a) Use a finite difference method to plot the composition profile after the anneal.
b) Compare your result with the erfc solution for the composition profile.

4. 1015 atoms/cm2 of boron were implanted into a silicon wafer at 70 keV.
For this implantation voltage the end of range, RP, for boron is about 0.2 lm, and
the straggle, DRP, is about 0.05 lm. The as-implanted distribution is given by:

C ¼ Q0ffiffiffiffiffiffi
2p
p

�Rp

exp �
ðx � RpÞ

2

2ð�RpÞ
2

" #

where Q0 is the implanted dose in atoms/cm2.
a) Plot the as-implanted concentration profile.
b) Using the numerical method in a spreadsheet, determine the concentration

profiles after 30 s, 1 min and 5 min at 1200 8C, where the diffusion coefficient
of boron in silicon is 10�12 cm2 s�1.

5. a) A 1-micrometer thick layer of phosphorus was deposited onto a 0.6-mm thick
silicon wafer. The wafer was then annealed for half an hour at a temperature of
1250 8C, where the diffusion coefficient of phosphorus in silicon is
6 � 10�12 cm2 s�1. The solubility of phosphorus in silicon at 1250 8C is
1.2 � 1021 atoms/cm3. Sketch the resulting phosphorus concentration pro-
file. A cubic centimeter of silicon contains 5 � 1022 atoms.

b) A monolayer of copper was accidently deposited on the surface of the same
wafer before the diffusion anneal. Sketch the concentration distribution of
the copper after the diffusion anneal. The diffusion coefficient of copper in
silicon is 2 � 10�4cm2 s�1 at 1250 8C.

6. A wafer was annealed for 1 h at a temperature where the diffusion coefficient in
silicon of a dopant deposited on the surface is10�8 cm2 s�1. Assuming that the
surface concentration of the dopant remains fixed at 1.0,
a) Use a finite difference method to determine the composition profile after the

anneal.
b) Compare a plot of your result with the erfc solution for the composition profile.

7. A slab of copper 1 mm thick containing 1 % of oxygen is put into a vacuum cham-
ber at a temperature where the diffusion coefficient of oxygen in copper is
10�8 cm2 s�1. Assuming that the oxygen concentration at the surface is zero, de-
termine analytically the distribution of oxygen in the sample after 24 h.

8. Write a paper of about 5 pages on finite difference methods and their application to
diffusion problems.
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Chapter 8

Stefan Problems

During phase transformations, the compositions in the two phases are usually differ-
ent, as indicated by the relevant phase diagram. These composition differences must
be applied as boundary conditions at the interface, in order to describe the diffusion
field. But the interface between the two phases, where the boundary condition is to be
applied, moves in time. And the concentrations at the boundary influence the rate of
motion of the boundary. The equations describing this state of affairs are non-linear,
and the solutions can be quite complex. This class of moving boundary problems is
known as Stefan problems. The mathematical solutions to these problems are of great
interest to some applied mathematicians.

We will discuss some important approximate solutions for these problems. Applied
mathematicians do not approve of these solutions, but they provide simple answers for
cases where the approximations are valid, which can be of great practical value. One
commonly used simplification scheme is to assume that the concentration profile is
given by a steady-state solution to the diffusion equation.

8.1

Steady-State Solutions to the Diffusion Equation

The steady-state solutions assume that the interface moves sufficiently slowly so the
same diffusion profile exists as would be found at a stationary interface. The procedure
is to derive the concentration field assuming that the interface is stationary. From the
concentration field the flux of atoms to the interface can be calculated. Then this flux is
used to calculate how fast the interface is moving.

As an example, we will analyze the growth of an oxide layer on silicon.
Oxygen combines readily with silicon to form SiO2. At room temperature, a few

atomic layers of oxide form very quickly on a clean silicon surface. Oxide layers
are grown on silicon by heating wafers up to 1050 8C or 1100 8C in air or in an oxygen
atmosphere, where an oxide layer that is a few micrometers thick will grow in half an
hour or so. This process was very important in the early days of silicon manufacture
because the oxide could be patterned using photolithography and etching, and then the
patterned oxide was used as a mask to selectively deposit dopants. The oxide can with-
stand the annealing temperatures for the dopant drive-in, whereas the photomask

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3
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material does not. This process is used today to grow field oxides, which are used to
isolate the active devices from each other on integrated circuits. Silicon rather than
germanium came into widespread use because SiO2 is stable and inert, whereas ger-
manium oxide is volatile.

Another advantage of the growth of the oxide layer on silicon is that the growth
occurs by the diffusion of oxygen through the oxide to the interface between the oxide
and the silicon, and combines with silicon there to make more oxide, as illustrated in
Fig. 8.1. So the interface between the silica and silicon is clean, and any dirt that is on
the outer surface stays there.

If the interface were stationary, the concentration profile would not change with
time, and would be as illustrated in Fig. 8.2.

The concentration at the surface of the oxide layer, CS, is determined by the oxygen
concentration in the atmosphere over the wafer. The concentration at the interface, CI,
is approximately the value corresponding to equilibrium concentration of oxygen, Ce,
in silica that is in equilibrium with silicon at the oxidizing temperature.

Figure 8.1 Oxide growth on silicon.

Figure 8.2 Oxygen concentration in the oxide layer.
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The steady-state solution is independent of time:

@C

@t
¼ 0 ð8:1Þ

The diffusion equation reduces to:

d2C

dx2
¼ 0 ð8:2Þ

which has the simple solution:

C ¼ ax þ b ð8:3Þ

The concentration field is linear with distance through the oxide layer. Applying the
boundary conditions, C = CS at x = 0, and C = Ce at x = l, gives:

C ¼ Cs �
ðCs � CeÞ

l
x ð8:4Þ

where l is the thickness of the oxide layer. This concentration profile produces a flux
of oxygen to the interface that is given by Fick’s first law:

J ¼ �D
dC

dx
¼ D

Cs � Ce

l
ð8:5Þ

CS and Ce are small excesses in the oxygen concentration of the oxide over the stoi-
chiometric value, which we will denote as Coxide. This flux provides oxygen to make the
oxide layer grow at a rate v. So that:

Coxidev ¼ J ð8:6Þ

Since v = dl/dt, Eqs. 8.5 and 8.6 can be combined to give a differential equation for the
growth rate of the oxide:

Coxide

dl

dt
¼ D
ðCs � CeÞ

l
ð8:7Þ

or

ldl ¼ D
Cs � Ce

Coxide

dt ð8:8Þ

which has the solution:

1

2
l2 ¼ D

Cs � Ce

Coxide

tþ B ð8:9Þ

For l = 0 at t = 0, then B = 0.
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So the thickness of the oxide increases with the square root of time:

l ¼ 2
Cs � Ce

Coxide

Dt

� �1
2

ð8:10Þ

This describes the experimentally observed rate of growth of oxide layers on silicon
after an initial transient period.

This solution assumes that Cs and Ce are constant, and that the oxidation reaction,
combining oxygen and silicon to make oxide, is fast. It ignores the change in amount of
excess oxygen in the oxide (the diffusing species) with time. In order to obtain a solu-
tion, the method assumes that the interface is not moving, and then uses the solution
to calculate how fast the interface is moving. No wonder purists do not like this solu-
tion. But it works.

8.2

Deal–Grove Analysis

For very thin layers, the diffusion flux of atoms to the interface from the surface is very
rapid, and so the rate at which oxygen combines with silicon to make SiO2 can be the
rate-limiting process. A widely used analysis that includes this reaction rate is known
as the Deal–Grove model [1]. In addition to using the steady-state solution for diffu-
sion, as above, they included a reaction-rate term by assuming that the reaction rate is
proportional to the excess concentration of oxide at the silicon/oxide interface:

kSðCI � CeÞ ð8:11Þ

The flux of atoms to the interface is given, as in Eq. 8.5, by:

D
CS � CI

l
ð8:12Þ

At steady state, these two rates must be equal.

kSðCI � CeÞ ¼ D
CS � CI

l
ð8:13Þ

If the rates are not equal, and the diffusion flux is greater, then CI will increase. This
increases the reaction rate, and decreases the diffusion flux. Conversely, if the reaction
rate is faster, this will decrease CI, which will reduce the reaction rate and increase the
diffusion flux.

Equation 8.13 can be rearranged to give:

CS � Ce ¼ CS � CI þ CI � Ce ¼ ðCS � CIÞ 1þ D

kSl

� �
ð8:14Þ

As in Eq. 8.7, the rate at which the oxide layer thickens is given by:

dl

dt
¼ D

l

ðCS � CIÞ
Coxide

ð8:15Þ
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Replacing CS–CI with CS–Ce from Eq. 8.14:

dl

dt
¼ kSðCS � CeÞ

Coxide

1þ kSl

D

� � ð8:16Þ

or

1þ kSl

D

� �
dl ¼ kSðCS � CeÞ

Coxide

dt ð8:17Þ

which has the solution:

l2 þ 2D

kS

l ¼ 2DðCS � CeÞ
Coxide

tþ constant ð8:18Þ

This is usually written as:

l2 þ Al ¼ Bðtþ sÞ ð8:19Þ

where:

B ¼ 2D
ðCS � CeÞ

Coxide

B

A
¼ kS

ðCS � CeÞ
Coxide

ð8:20Þ

For long times, l is large, so the term in l2 in Eq. 8.19 will be large compared to the
linear term Al. The growth rate then depends on diffusion, and the thickness of the
layer will increase as the square root of time, as in Eq. 8.10 in the previous analysis.

For short times, the term in l2 will be small compared to the term Al in Eq. 8.19. The
growth rate of l is then proportional to B/A, and the thickness of the oxide layer in-
creases linearly with time. This is the reaction-rate-limited regime.

The constant s provides for an initial layer thickness that is not zero at t = 0.
A and B are known as the Deal–Grove coefficients, and are usually presented as

values of B and B/A. B depends on the diffusion coefficient, and B/A depends on
the reaction rate constant. Both are temperature dependent, with a temperature de-
pendence given by:

C expð�E=kTÞ ð8:21Þ

Experimentally determined values of C and E for a variety of growth conditions and
temperatures are presented in the Table 8.1.

The Deal–Grove analysis, which is commonly used to estimate the time required to
grow an oxide layer with a desired thickness, is based on the steady-state solution for
the diffusion field. Although it is not mathematically correct, this solution is very
simple, and this analysis has proved to be very useful.
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8.3

Diffusion-Controlled Growth of a Spherical Precipitate

We will now use the steady-state solution for the diffusion field to calculate the growth
rate of a spherical precipitate, for the case where growth rate is limited by diffusion to
the precipitate [3].

In spherical coordinates, the steady-state diffusion equation is:

D
@2C

@r2
þ 2

r

@C

@r

� �
¼ @C

@t
ð8:22Þ

For steady state, the solution does not change in time, so @C/@t = 0. The solution to this
equation takes the form:

C ¼ A

r
þ B ð8:23Þ

This solution is unattainable exactly in nature, because the integral of the concentra-
tion field is infinite, which means that an infinite amount of material would be re-
quired to reach steady state. For example, for the sphere:

Z1

r0

4pr2 A

r
þ B

� �
dr ¼ 1 ð8:24Þ

Figure 8.3 Schematic of a precipitate particle and the diffusion field around it.

Table 8.1 Deal–Grove coefficients, B and B/A. (From [2]).

Ambient B B/A

Dry O2 C ¼ 7.72 � 102 lm2 h�1

E ¼ 1.23 eV

C ¼ 6.23 � 106 lm2 h�1

E ¼ 2.0 eV

Wet O2 C ¼ 2.14 � 102 lm2 h�1

E ¼ 0.71 eV

C ¼ 8.95 � 107 lm2 h�1

E ¼ 2.05 eV

H2O C ¼ 3.86 � 102 lm2 h�1

E ¼ 0.78 eV

C ¼ 1.63 � 108 lm2 h�1

E ¼ 2.05 eV
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In practice, the outer limit on the concentration field can be taken as a few times the
diffusion distance, which is

ffiffiffiffiffi
Dt
p

. The concentration there will actually be small en-
ough so that it has little influence on the composition at the interface.

The initial concentration of the solution before precipitation, which remains the
concentration far from the precipitate, is C1, the concentration in the precipitate par-
ticle is CP, and the concentration in the matrix at the interface is CI, as illustrated in
Fig. 8.3. We will assume that the concentrations in the precipitate particle and in the
matrix at the interface are the equilibrium values, as given by the phase diagram, as
illustrated in Figs. 8.4 and 8.5. In other words, we are assuming that the reaction rate at
the interface is rapid, so that the growth rate is limited by the diffusion process.

Figure 8.4 Phase diagram for precipitation from a liquid.

Figure 8.5 Phase diagram

for precipitation from a

solid solution.

8.3 Diffusion-Controlled Growth of a Spherical Precipitate 103103



Usually there will be many precipitate particles, and each particle will draw material
only from the region around itself. The density of precipitate particles depends on the
nucleation process, and the background concentration decreases as the precipitation
proceeds. In our analysis, we will ignore nucleation effects and the interactions be-
tween precipitate particles. We will assume that the background concentration re-
mains constant, and that our particle starts out at t = 0 with radius a = 0.

At steady state, the concentration field has the form given in Eq. 8.23, and after
applying the boundary conditions that C = C1 far from the particle and C = CI in
the matrix at the interface, this solution becomes:

C ¼ ðCI � C1Þ
a

r
þ C1 ð8:25Þ

This concentration profile is illustrated in Fig. 8.3.
The flux of atoms in the diffusion field at the interface is:

J ¼ �D
dC

dr

� �
r¼a

¼ ðCI � C1Þ
D

a
ð8:26Þ

The rate at which atoms arrive at the surface of the particle is the flux of atoms to the
surface times the surface area of the particle:

�4pa2J ¼ 4paDðC1 � CIÞ ð8:27Þ

The rate of growth of the volume, V, of the particle can be written in terms of the rate at
which the radius increases:

dV

dt
¼ dV

da
� da

dt
¼ d

da

4

3
pa3

� �
da

dt
¼ 4pa2 da

dt
ð8:28Þ

The amount of material in the precipitate particle is VCP, where CP is the number of
atoms per unit volume in the precipitate, as given by the phase diagram. The rate of
growth of the particle is given by the rate at which atoms arrive at it:

Cp

dV

dt
¼ �4pa2J ð8:29Þ

or

Cp4pa2 da

dt
¼ 4pDaðC1 � CIÞ ð8:30Þ

which can be rewritten as:

ada ¼ D
C1 � CI

Cp

dt ð8:31Þ

which, for a = 0 at t = 0 has the solution:

1

2
a2 ¼ C1 � CI

Cp

Dt ð8:32Þ
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So the radius of the precipitate particle increases with the square root of time. It is
surprising that this is the same relationship we found for the diffusion-limited growth
of a layer in one dimension, Eq. 8.9.

A limitation on the validity of this solution can be estimated by examining the size of
the diffusion field around the particle. We assumed that the interface was stationary
when we used the steady-state equation for the diffusion field. If the radius of the
particle is small compared to the radius of the diffusion field, then we are justified
in this assumption that the motion of the interface is not important in determining
the shape of the diffusion field.

From Eq. 8.32, the time it takes a particle to grow to a radius a is:

ta ¼
Cp

C1 � CI

a2

2D
ð8:33Þ

The distance that an atom can diffuse during this same time is:

R2 ¼ Dta ¼
CP

C1 � CI

a2

2
ð8:34Þ

For CP >> C1–CI, R will be large compared to a. Our solution will be of questionable
validity if this condition is not met. This suggests that our solution is more likely to be
valid for solid-state precipitation, as illustrated by the phase diagram of Fig. 8.5, that for
precipitation in a liquid, where a typical phase diagram is more likely to resemble
Fig. 8.4.

In our analysis, we have ignored the change in concentration that takes place in the
diffusion field. That is, as the radius of the particle changes, the diffusion field around
it also changes. So there is a correction to the flux that we calculated that goes into
changing the diffusion field. Our solution is valid if the diffusion flux to the interface
changes slowly as the particle grows. This will not be true if the radius of the particle is
similar to the radius of the diffusion field. This suggests how our steady-state solution
should be modified for the case where the radius of the particle is not small compared
to the radius of the diffusion field. An analysis of the diffusion-controlled growth of
a precipitate that does not rely on the steady-state diffusion field was presented by
Ham [4].

8.4

Diffusion-Limited Growth in Cylindrical Coordinates

In cylindrical coordinates, the diffusion equation is:

D
@2C

@r2
þ 1

r

@C

@r

� �
¼ @C

@t
ð8:35Þ

For steady state, the solution does not change in time, so @C/@t = 0. The solution to this
equation takes the form:

C ¼ A lnðrÞ þ B ð8:36Þ
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with the boundary conditions:

C ¼ C1 at r ¼ R1; C ¼ CI at r ¼ a ð8:37Þ

Equation 8.36 gives a concentration that is infinite at r =1, so the boundary condition
must be applied at some finite radius, which we will call R1.

The solution becomes:

C ¼
C1 ln

r

a

� �
þ CI ln

R1
r

� �

ln
R1
a

� � ð8:38Þ

which is messier than the solution in either 1-D or for a sphere.
The concentration gradient at r = a is:

dC

dr

� �
r¼a

¼ C1 � CI

ln
R1
a

� � ð8:39Þ

And the rate of change of volume is:

dV

dt
¼ 2pa

da

dt
ð8:40Þ

So the differential equation for the growth rate of the cylinder is:

aðln R1 � ln aÞda ¼ D
C1 � CI

Cp

dt ð8:41Þ

which has a solution:

a2

2
ln R1 � ln a� 1

2

� �
¼ D

C1 � CI

CP

t ð8:42Þ

The growth rate of the radius of the cylinder is only approximately proportional to the
square root of time.

The steady-state solutions above are all approximate solutions to the diffusion pro-
blem. We ignored time-dependent variations to the diffusion field, but we also as-
sumed that the compositions at the interface and far from the interface did not change
in time. We ignored surface tension effects that are important for small spheres and
cylinders, we ignored stress effects that can be important for precipitation in a solid,
and we ignored nucleation effects by assuming that the precipitate started with zero
radius at t = 0.

But these solutions have simple forms, and they provide valuable approximations to
the full solutions.
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Problems

1. Calculate the thickness of the oxide layer on a silicon wafer after
a) 1 min
b) 10 min
c) 1 h
in a wet oxygen atmosphere at 1050 8C.

2. A 1-nm diameter particle of gold nucleates in a glass matrix containing 1 % gold at
1000 8C. The precipitate particle is essentially pure gold, and the equilibrium con-
centration of gold in the glass at 1000 8C is 0.1%. Assuming that the growth of the
particle is controlled by diffusion, and the diffusion coefficient of gold in glass at
1000 8C is 10�10 cm2 s�1, use the steady-state approximation for diffusion to a sphe-
rical particle to calculate how big the particle will be after 1 h.
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Chapter 9

Phase Transformations

The rate at which a first-order phase transformation proceeds depends on the rate
of atomic processes at the interface, on how rapidly the transformation heat can be
removed from the vicinity of the interface, and on diffusion to or from the interface
region of the species involved in the growth process. There are instances when only
one of these three dominates the growth process. There are other cases where two of
these three control growth, and there are cases where all three are important. But all
three are always present; it is their relative dominance in the growth process that var-
ies.

In general, the rate at which a phase transformation proceeds depends on all three:
the composition at the interface, on the reaction kinetics, and on heat flow.

The slow process dominates and controls the transformation rate.
There is always a finite driving force for a phase transformation. The slow process

dominates by taking up more of the available driving force, and so leaving less for the
other processes, which slows them.

9.1

Transformation-Rate-Limited Growth

A first-order phase transformation proceeds by the rearrangement of atoms at the
interface between the two phases. These atomic processes depend only on the local
conditions at the interface. The rate at which a transformation proceeds depends on
the composition and temperature at the interface.

There are situations where the atomic processes dominate the transformation pro-
cess. Transformation-rate-limited growth occurs, for example, during crystallization of
glasses where the mobility of the atoms or molecules that are crystallizing is very small.
For example, the crystallization rate of silica, as shown in Fig. 9.1, proceeds at a max-
imum rate of about 12 micrometers per minute. Glass crystallization is usually studied
by placing a sample of the glass in a furnace for minutes or hours, and then removing
the sample to examine how far the crystals have grown. For a single component glass,
chemical segregation is not an issue, and the growth proceeds sufficiently slowly that
the sample is at the temperature of the furnace.
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Transformation-limited growth also occurs during growth from solution. Crystals
are often grown from solution in times on the order of weeks or months. The growth
rate is limited, not by the mobility of the molecules in the solution, but by the rate of
formation of new layers of the crystal, which requires a finite amount of supersatura-
tion (DCK) or equivalently, supercooling (DTK), for growth at a reasonable rate (see
Fig. 9.2).

Figure 9.1 Crystallization rate of

silica at various temperatures [1].

Figure 9.2 Transformation-rate-limited

growth from a solution.
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The growth is so slow that the solution is also isothermal. The crystals grow so slowly
that the composition field is also uniform throughout the solution at the interface
composition, CI, although there can be a local diffusion limitation to the motion of
steps across a surface. In this case, the temperature at the interface is the externally
imposed temperature. The composition of the solution is uniform, although it changes
with time as the crystal grows. The average interface composition is not at the equili-
brium value, since there must be a finite supersaturation to promote the growth pro-
cess.

9.2

Diffusion-Limited Growth

Diffusion-limited growth of an oxide film and of a precipitate were discussed in
Chapter 8. Segregation during crystal growth will be discussed in more detail in
Chapters 11 and 12.

9.3

Thermally Limited Growth

The precipitation process is usually exothermic, and the heat generated by the growth
process changes the temperature at the growth front. For a slowly growing precipitate,
the temperature rise may be very small, but it must be there, as illustrated schema-
tically in Fig. 9.3.

The thermal field around a growing precipitate or crystal has the same mathematical
form as the concentration field around a growing crystal, but the diffusion of heat is
much more rapid than the diffusion of matter.

Figure 9.3 Thermal field

and concentration field

around a growing precipitate.
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The heat generated by the growth process plus the heat conducted to the interface
through the crystal must be carried away into the liquid, so the boundary condition for
heat flow due to the evolution of heat by the growth process is:

KL

dT

dx

� �
L

þLv ¼ KS

dT

dx

� �
S

ð9:1Þ

The positive direction of x is the direction of motion of the growth front, K is the
thermal conductivity, L is the latent heat, and v is the growth rate. The subscripts
refer to solid and liquid phases. In Fig. 9.3, there is no temperature gradient in the
precipitate, and the temperature gradient in the liquid is negative. This temperature
gradient must be large enough to carry away the latent heat. For faster growth, the
temperature gradient must be steeper, and so the temperature of the growing crystal
is likely to increase.

Most metals and semiconductors have very rapid transformation kinetics for soli-
dification, and so the freezing rates of pure metals and semiconductors are limited by
heat flow. The heat flow is used to control the growth process, as for example in Bridg-
man growth [2], or Czochralski growth [3], as illustrated in Fig. 9.4.

In both of these cases, the thermal conditions are established by heaters so that the
liquid is hot and the crystal is cooler. In the Bridgman case, the sample is held in a
container that is lowered out of a furnace at controlled rate. In the Czochralski case, the
crystal is pulled out of the liquid at the same rate that it is growing so that the interface
stays near the surface of the melt. In both cases, heat flows through the interface from
the liquid to the crystal.

Figure 9.4 a) Bridgman and b) Czochralski crystal growth.
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The latent heat generated by the crystallization process and the heat flux to the inter-
face due to the temperature gradient in the liquid must both be carried away by the
temperature gradient in the crystal, as in Eq. 9.1. Changing the growth rate in this case
does not change the interface temperature due to heat flow. It changes the temperature
gradients at the interface.

The interface position is stabilized by the temperature gradients. If the growth rate
increases above the drive rate, the interface moves into hotter liquid, and the growth
rate slows down. Conversely, if the growth rate slows, the interface moves into colder
liquid, and the growth rate increases. Crystal growth processes are discussed in more
detail in Chapter 10.

A similar process is used for continuous casting, which produces polycrystalline
material. The solidified material is continuously lowered from the cooled mold,
and more liquid is continuously added to the melt, as illustrated in Fig. 9.5. Contin-
uous processes are usually less expensive than batch processes, and the billet produced
is smaller in diameter than a typical casting, and so is easier to roll and draw into a
sheet or a wire.

9.4

Casting of Metals

If the liquid of a pure metal is supercooled and then the solid phase is nucleated, the
growth will be dendritic. The heat of fusion is more than enough to heat the whole
sample up to the melting point, so only some of the liquid will freeze until more heat is
extracted. The growth process can reach the far corners of the container much faster
than heat can diffuse there, and so the growing solid subdivides into a dendritic struc-
ture, leaving behind a region that is part liquid and part solid, but that has already been
heated to close to the melting point. Dendritic growth is discussed in Chapter 26.

Figure 9.5 Continuous casting.
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If a pure metal liquid is poured into a cold mold, many small dendritic crystallites
will form initially, and then growth will proceed in from the wall as heat is extracted
from the mold.

For an alloy, the situation is even more complicated. Dendrites can form as a result
of chemical diffusion as well as heat flow. The scale of the dendrite structure depends
on the diffusion coefficient, which is quite different for heat and for chemical diffu-
sion. In an alloy dendrites will form even when the thermal field is carefully controlled.
The structure of castings is discussed in more detail in Chapter 28.

9.5

Operating Point

Examples are given above for cases where chemical diffusion limits the rate of a phase
transformation, where transformation kinetics are rate limiting, and where heat flow is
rate limiting. There are cases where two of these factors are important and the third is
not. In general, all three are present and are important to a greater or lesser degree.
Fig. 9.6 illustrates the case where all three are present during growth of a solid phase.

In Fig. 9.6, TM
A is the melting point of the pure material. C1 is the initial composi-

tion of the alloy or solution. The liquidus temperature for this composition is TL(C1).
The composition of the solid will lie on the solidus. As a result of the rejection of the
second component from the growing phase (or the preferential incorporation of the
primary component, depending on how you look at it), the concentration of the liquid
at the interface has been increased, by an amountDCD, to CI. The liquidus temperature

Figure 9.6 Illustrating the operating point on a phase diagram.
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corresponding to this composition is TL(CI). The temperature far from the growing
phase is T1, and the liquidus composition at this temperature is CL(T1). The interface
temperature has increased above the far field temperature by an amount DTH, to TI,
due to the latent heat generated by the growth process.

The liquidus composition at this temperature is CL(TI), and the equilibrium com-
position of the solid phase at this temperature is CS(TI).

The operating point is in the two-phase field. It must be below the liquidus in order
for the transformation to proceed. The composition of the solid phase that grows is,
correspondingly, at CP, which is below the equilibrium solidus.

The distance below the liquidus represents the driving force for crystallization. It can
be described either as an undercooling, DTK = TL(CI)–TI or as a compositional driving
force, DCK = CL(TI)–CI. These two representations are equivalent for the kinetic driving
force for the transformation, which is formally defined as the difference between the
free energy of the liquid that is transforming and of the solid that is forming.

Usually, an experimenter cannot control the interface composition and temperature
directly. Only the initial concentration of the melt, and either the initial temperature or
the rate of cooling can be controlled. As a result, the supercooling is usually defined as
TL(C1)–T1, and the supersaturation as (CL(T1)–C1)/(CL(T1)–CP). These values of the
supercooling and supersaturation define the nominal operating point. They include the
driving forces necessary to drive the diffusion process, the heat flow, and the trans-
formation kinetics.

The transformation rate is controlled by the local temperature and composition at
the interface. These depend on the fluxes of heat and matter to or from the interface, as
well as on the transformation rate.

In addition to the local temperature and composition, the motion of an interface is
influenced by the local curvature of the interface. A positive local curvature (the center
of curvature in the lower energy phase) lowers the local equilibrium temperature, and
a negative curvature raises it. This effect plays a central role in nucleation, as discussed
in Chapter 15.

The equilibrium phase diagram is applicable when the rate at which atoms or mo-
lecules at the interface move around rapidly compared to the rate at which the trans-
formation proceeds. Each growth site at the interface then has a concentration that is,
on average, the local concentration. Each component then acts independently, and the
incorporation of species into the growing phase depends on their individual chemical
potentials. When the growth rate becomes comparable to the rate at which atoms or
molecules can move by diffusion, then the species perforce must transform between
the phases in a cooperative manner, and so a kinetic version of the phase diagram is
applicable, as discussed in Chapter 24.
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Problems

The answers to these questions are to be found by consulting reference sources.

1. What are the thermal and chemical diffusivities in water at room temperature?
2. What are the thermal and chemical diffusivities in liquid and solid copper at the

melting point of copper?
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Chapter 10

Crystal Growth Methods

Crystals will grow from a melt much more rapidly than they will grow from the vapor
phase or from a solution. This is simply because the density of material in the melt is
comparable to that in a crystal, so the atoms or molecules are essentially there already
to grow the crystal. For both vapor and solution growth, the density of atoms or mo-
lecules in the mother phase is much lower, and the growth rate depends on the rate at
which they arrive at the surface of the crystal.

For the commercial growth of crystals, the faster that crystals of acceptable quality
can be grown, the better. This is also true for the non-commercial growth of experi-
mental crystals. So melt growth is the preferred method. There are various reasons
why many crystals cannot be grown from the melt, but if a crystal can be grown from
its melt, it will be.

10.1

Melt Growth

There are several different schemes for melt growth [1, 2]. In melt growth, the intrinsic
growth process is usually so rapid that the growth is controlled by heat flow. The var-
ious schemes differ primarily in the configuration of the growth apparatus.

10.1.1

Czochralski Growth

This method is named after the person who is given credit for inventing it. It is a
preferred method of growth because there is no container around the growing crys-
tal. Most of the silicon used for microelectronic applications is grown by the Czochrals-
ki method [3]. Figure 10.1 shows a schematic drawing of a Czochralski growth appa-
ratus.

It is a very simple method in principle. The liquid is slightly undercooled so that the
crystal grows down into the liquid. But there is a drive mechanism that is adjusted to
pull the crystal up as fast as it grows. So the interface between the crystal and the melt
stays more or less stationary as the crystal grows. Of course, the liquid level drops as
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the crystal grows, and the crystal growers try to convert as much as possible of the
liquid into good crystal.

The growth rate of the crystal is determined by the undercooling at the interface. The
temperature of the interface depends on the temperature of the liquid in the crucible,
which depends on the heat flow through the system. Heat flows from the heater, which
is around the crucible, into the liquid, through the interface, and then up the crystal.
The latent heat, which is generated by the freezing process, must also be conducted up
the crystal. Heat is lost from the crystal to the surroundings by conduction, by con-
vection and by radiation. Overall, the heat flow depends on the design of the crystal
puller, on how much power is coupled into the melt, and on how fast heat is lost from
the crystal into the upper part of the growth chamber. The temperature gradient at the
interface tends to stabilize the position of the interface. If the crystal grows too rapidly,
it grows into a region of higher temperature, and so it slows down, and vice versa, if it
grows too slowly, the undercooling increases, and so the growth rate increases. The
cross section of the crystal, and the area of the interface are the same, so that the heat
flow conditions are relatively independent of the diameter of the crystal.

As the crystal grows, the heat loss from the crystal changes because the surface area
of the crystal increases as it gets longer, and the liquid level drops, so that the coupling
from the heater into the melt changes. There must be continuous minor adjustments
to maintain the balance of heat flow into the crucible and out through the crystal as
growth proceeds. This can be done manually, by a crystal grower monitoring the pro-
cess, or using automatic diameter control. The control system, whether manual or
automatic, has only two variables to play with: the power to the heater, which changes
the temperature of the melt, and the pull rate of the crystal. The first of these has a
fairly long response time, because of the thermal mass of the crucible and the liquid.
Rapid corrections are made by adjusting the pull rate.

Automatic diameter control is often accomplished by weighing either the crucible
or the growing crystal. Modern weighing equipment is accurate enough to control

Figure 10.1 Schematic drawing of Czochralski

crystal growth apparatus.
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the rate at which weight is gained by the crystal or lost from the crucible. This method
works well for crystals that are denser than the liquid, but is not so good for silicon,
which expands on freezing. If a silicon crystal grows down into the melt, the liquid level
can rise, increasing the buoyancy on the crystal, and reducing its apparent weight. For
silicon there is a bright ring, caused by reflections, at the meniscus where the liquid and
crystal join. Diameter control is effected by imaging this bright ring onto an array of
photocells, and using the output from the photocells for feedback control.

It is difficult to make the thermal field around the growing crystal precisely circularly
symmetric, and so the crystal is rotated to smooth out any angular asymmetries in the
thermal field. This often results in periodic variations in the local growth rate, as the
crystal alternately rotates through the hotter and cooler zones. The crucible is some-
times rotated as well to modify the fluid flow patterns in the melt. Magnetic fields are
sometimes used to reduce convective flows in the melt.

Dash [4] discovered that all of the dislocations in a silicon or germanium crystal will
grow out, that is, they move laterally during growth so that they terminate on the sides
of the crystal, leaving a perfect crystal, if the crystal is less that about 3 mm in diameter.
When a seed crystal is first dipped into a hot melt, many dislocations are produced by
the thermal stresses. These dislocations will propagate down the entire length of a
large crystal, but they can be grown out of a small diameter crystal by the Dash pro-
cedure. So a small diameter seed crystal is grown a few inches, until the operator sees
that the facets on the surface of the seed crystal have changed, which indicates that the
seed is dislocation free. The seed is then grown another inch or so before it is “shoul-
dered”, that is, widened out to the desired final diameter, usually under computer
control. Then the automatic diameter control system takes over. It is a tribute to
the properties of silicon that a 300-mm diameter boule that is a meter long can be
suspended on a three-millimeter diameter seed.

Figure 10.2 contains a sequence of photographs, looking down into the crucible at an
angle, taken during the Czochralski growth of a silicon crystal.

The process starts with lumps of high-purity polysilicon in the crucible. The next two
photos were taken as melting of the poly proceeded. At the left of the middle row, the
seed is dipped into the melt. In the middle picture, the seed has been grown some
distance, and the shouldering has started. In the next frame, the shouldering is con-
tinued. In the left picture in the bottom row, the shouldering is complete, and the
growth at the final diameter has begun. In the last two pictures in the bottom row,
growth is proceeding at a constant diameter. The bright ring where the crystal leaves
the liquid, which is used for diameter control, is clearly visible in the pictures in the
bottom row.

The (111) face of silicon facets during crystal growth. The crystals can be grown
either with a central facet or with a peripheral facet, as shown in Fig. 10.3.

These configurations can be controlled by changing the temperature gradient. The
temperature at the coolest part of the facet is about five degrees below the melting
point so that new layers will nucleate rapidly enough for growth. The undercooling
in the off-facet directions is less than a millidegree. These differences in growth
rate are discussed in Chapter 21. The peripheral facet configuration tends to suppress
the formation of twins at the edge of the interface.
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The Czochralski method has the advantage that no container is required to hold the
crystal. But a crucible is required to contain the melt. For silicon, the crucible is made
from high-purity “semiconductor grade” silica. Silica softens below the melting point
of silicon, and so it must be supported, usually by shaped graphite. The graphite can
also serve as a susceptor for rf heating, or more commonly as resistive heating ele-
ment. Silica is slightly soluble in liquid silicon, which introduces oxygen into the
melt. Some of this oxygen evaporates from the surface of the melt, and some of it
is incorporated into the growing crystal. Czochralski silicon typically contains about
1018 oxygen atoms per cubic centimeter.

Single crystals of many materials are grown using the Czochralski method, because
of its simplicity, and because it permits the seeding of the growth process, so that
crystals of any desired orientation can be grown.

Figure 10.2 Photographs taken during Czochralski growth of a silicon crystal.

Figure 10.3 Growth configurations for (111)

silicon: a) central facet, b) peripheral facet.

a) b)
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The components of some crystals, phosphorus in InP for example, have high vapor
pressures at the melting point of the crystal. High-pressure pullers and liquid-encap-
sulated Czochralski (LEC) methods have been developed for these materials. The
chamber is typically filled with argon under pressure.

Growth is carried out in a pressurized chamber. Boron oxide, which is an inert, low
melting point material, can be floated as a liquid layer on the top of the melt, and the
crystal is pulled through this layer. The combination of the liquid encapsulant and high
pressure of argon above it work together to contain the volatile components in the
melt.

10.1.2

Floating Zone

The floating zone method [5] is used to make high-resistivity silicon crystals, which are
used to make power-handling devices. The crystals do not contain oxygen, and so have
resistivities as high as 10,000 ohm-centimeters, instead of 10 ohm-centimeters, which
is typical for Czochralski silicon. This method does not require a container for the
liquid. Instead, the liquid is held in place by surface tension, as illustrated in
Fig. 10.5. Growth proceeds by moving the heater coil, which moves the liquid
zone, upwards.

Figure 10.4 Liquid-encapsulated Czochralski.
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On the left is axi-symmetric growth with the feed rod the same diameter as the final
crystal. This method usually results in a single torroidal flow pattern in the liquid, and
so the center of the liquid zone is not heated very efficiently. In the scheme shown on
the right, which is the more usual configuration, the feed rod has a smaller diameter
than the growing crystal. The smaller diameter feed rod is off-center, and this config-
uration results in a single horizontal convective roll in the melt, which heats the center
of the liquid efficiently. The feed rod must be moved relative to the growing crystal at a
different rate from that of the heater coil.

This method requires the preparation of the seed rod of appropriate diameter in a
separate zone melting run, making this a more costly process than Czochraski growth.
Semiconductor device people have learned to live with the oxygen in Cz silicon, and
even turn it to advantage for internal gettering. For power-transmission devices, the
higher resistivity of floating zone silicon results in a higher breakdown voltage, which
makes the extra cost worthwhile.

A variant on the floating zone method has been used to grow single crystal rods with
small cross sections of high melting point oxides. A high-power laser or lasers are
focused onto the rod to create a molten zone, and the molten zone is moved along
the rod to achieve growth. This is usually done for high melting point oxide materials
that are stable in air. The temperature gradients in the rod during growth are very
large, because heat is lost rapidly by radiation.

Figure 10.5 Floating zone crystal growth.
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10.1.3

Bridgman Method

In the simple version of Bridgman growth [6] the sample is contained in a tube, as
illustrated schematically in Fig. 10.6.

Initially the sample is heated in the furnace, and melted completely. It is then low-
ered slowly from the furnace. The crystal nucleates when the bottom end of the con-
tainer gets cold enough. The bottom end of the container is usually tapered to a point to
minimize the probability of forming many nuclei. In principle, a seed crystal can be
used in the bottom end of the container, but in practice, it is difficult to see the inter-
face in the seed in order to determine when it is partly melted. If the starting material,
which is usually polycrystalline, is not all melted, or if the seed melts completely, then
the seeding process fails. And usually the time interval between these two events is
short. So Bridgman growth is usually unseeded, and the orientation of the resultant
crystal is random.

In more sophisticated setups, baffles or multi-zone heaters are used to control the
temperature of the sample.

Special precautions are usually necessary to remove the crystal from the tube after
growth.

10.1.4

Chalmers Method

The Chalmers method [7] is similar to the Bridgman method, except that the sample is
held in an open, horizontal boat rather than in a vertical tube. Either the boat is with-
drawn from a stationary furnace, or the furnace is withdrawn slowly from around the

Figure 10.6 Bridgman crystal growth method.
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boat. In this configuration, the position of the interface can be observed on the top
surface of the sample. This permits the use of a seed in one end of the boat, so
that the partial melting of the seed can be controlled. The boat can be made with
sloping sides to facilitate the removal of the crystal, as illustrated in Fig. 10.7.

10.1.5

Horizontal Gradient Freeze

This method is similar to the Chalmers method, except that the sample is contained in
a multi-zone furnace. The temperature gradient in the crystal is imposed by the var-
ious heating zones. The boat and furnace are not moved relative to each other, but
rather the crystal is grown by lowering the temperature of each zone in the fur-
nace, usually with computer control

There is also a method called vertical gradient freeze, which is a vertical version of
this scheme; the Bridgman method without any moving parts.

10.2

Solution Growth

Crystals are grown from solution only if they cannot be grown from their melt. There
are several reasons why certain crystals cannot be grown from their melt. Crystal
growth from the melt requires that the molecules that make up the crystal should
not decompose below the melting point. It requires that the material not sublime
below the melting point, although this can be circumvented for some materials
with a high pressure growth apparatus. It requires that the material should melt con-
gruently. It requires that there should not be a solid-state phase transformation be-
tween the melting point and room temperature that will destroy the single crystal
on cooling.

A variety of solvents are used for growing crystals from solution.

Figure 10.7 Horizontal boat used in the Chalmers method. The seed is

visible on the left, and it is clear how much of the seed was melted.
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10.2.1

Growth from Aqueous Solutions

Water-soluble crystals are grown from aqueous solutions, in an apparatus such as is
illustrated in Fig. 10.8.

The growth is isothermal, and usually several weeks of growth is required to obtain a
crystal of reasonable size. The growth is started from a seed that is suspended from a
rod. The crystal is rotated, and the solution is stirred. The temperature of the solution
may be lowered progressively to compensate for the depletion of the solution.

10.2.2

Flux Growth

Flux growth is solution growth where the solvent is a low-melting oxide. Often the flux
is a mixture of boron oxide and lead oxide, and it is used to grow crystals of oxides, such
as garnets. Many garnets cannot be grown directly from the melt, but the components
of the garnet are soluble in the flux. The growth temperatures are usually much higher
than the boiling point of water, so crystals cannot be grown from aqueous solutions.

The growth crucible, which is usually platinum, is placed in a constant temperature
furnace, without stirring. A cold finger is attached to the bottom of crucible to promote
localized nucleation. Growth of a crystal of reasonable size usually takes several weeks.

10.2.3

Hydrothermal Growth

Hydrothermal growth [1] uses superheated steam as the solvent. The crystals are
grown in an autoclave, at a temperature and pressure above the critical point for
water. Quartz crystals are grown hydrothermally because there is a transition from
alpha to beta quartz at about 580 8C, which destroys the crystal, so a crystal grown
from the melt at 1700 8C does not survive on cooling to room temperature. Super-
heated steam is used as the solvent because SiO2 is minimally soluble in anything else.

There are usually two temperature zones in the autoclave, separated by a perforated
baffle. Nutrient material is placed in the higher-temperature zone, which is in the

Figure 10.8 Apparatus for growth from an aqueous

solution.
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lower part of the chamber to promote convection, and seed crystals are suspended in
the upper zone, at a lower temperature. The pressure is determined by the amount of
water added to the chamber. When heated to the operating temperature, this turns into
pressurized, superheated steam. Typical operating conditions for growing quartz are
400 8C in the dissolving zone, 350 8C in the growth zone, with a pressure of about 2000
bars. The growth of a crystal of reasonable size takes several weeks.

Natural quartz crystals and natural crystals of many other minerals are believed to
have grown under conditions like this, well below the surface of the earth.

10.3

Vapor-Phase Growth

Growth from the vapor phase is very slow, so that only a few bulk crystals are grown by
this method. On the other hand, thin films are usually deposited from the vapor phase,
where deposition rates of a fraction of a micrometer per minute are tolerable.

For growth from the vapor phase, the material should have high vapor pressure, and
it should not decompose on vaporization if it is a compound. Alternatively, if the com-
ponents have high vapor pressures, the desired compound can be assembled during
deposition. One such scheme is illustrated in Fig. 10.9, where two components are
vaporized separately, and combine at the growing crystal.

10.4

Stoichiometry

There is always a range of compositions over which a compound crystal can grow,
although this range may be very small. The composition, at which a liquid alloy trans-
forms into a compound having the same composition as the liquid, is known as the
congruent melting composition. On the phase diagram, this is the composition cor-
responding to the highest melting temperature of the compound, where the solidus
and liquidus lines have a common, horizontal tangent. This is the preferred composi-
tion for growing crystals, because at this composition there is no compositional seg-

Figure 10.9 Vapor-phase growth of a compound from its components.
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regation of the major species during growth, and so growth rate fluctuations do not
create composition fluctuations in the crystal, and instabilities due to constitutional
supercooling do not occur.

Usually, the congruent melting composition is not at the stoichiometric composi-
tion, and so crystals grown at the congruent melting composition are not stoichio-
metric. As a result, there are vacancies or anti-site defects in the crystal, rather
than more serious compositional variations that would result from interface instabil-
ities. This is illustrated in Fig. 10.10, which shows a conventional phase diagram for
Cd-Te alloys on the left. The semiconducting compound CdTe is shown as a vertical
line. On the right is an enlargement of the central part of the phase diagram. The single
phase region for CdTe has a distorted shape, and the congruent melting composition
is displaced from the stoichiometric composition.

Figure 10.10 On the left is a conventional phase diagram for Cd-Te. On

the right is an enlargement of the central part of the phase diagram.
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Problems

1. Discuss the difference between the Czochralski growth of silicon and of sapphire.
2. Discuss the relevant factors to be considered in selecting a growth medium for

crystal growth.
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Chapter 11

Segregation

11.1

Segregation during a Phase Change

In this chapter, segregation during a phase change will be discussed. We will focus on
these effects for the solidification process, which is the most common and most widely
used phase transformation in materials processing. Segregation processes are similar
for any phase transformation, but the details may differ due to differences in trans-
formation rates, in mobilities, diffusion rates, etc., of the species involved.

At equilibrium, the composition of one phase is, in general, different from that of
the others. This difference in equilibrium concentrations is described by the phase
diagram, as illustrated in Fig. 11.1.

At true equilibrium there are no composition gradients in any phase, and so the
composition of each phase is uniform, at the equilibrium concentration for the appro-
priate temperature. In practice, a solid of varying composition can form as the growth
conditions change during a phase transformation. Once such a solid has formed, it can
take a very long time for the composition to become uniform, and so true equilibrium
is seldom achieved. Below, we will be discussing how the growth conditions can
change the composition distribution in a solid while it is forming.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3

Figure 11.1 Phase diagram.
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An important quantity in discussing segregation is the ratio of the compositions in
the two phases. For solidification this is usually discussed in terms of the ratio of the
concentration in the solid to that in the liquid, as illustrated in Fig. 11.1. This ratio is
known as the k-value.

k � Cs

CL

ð11:1Þ

It is also commonly called the segregation coefficient.

11.2

Lever Rule

The simplest form of segregation is to assume that true equilibrium exists, so the
compositions of both the phases are uniform. In this case, we can write that the
sum of the compositions of a component in each of the phases must equal the total
overall composition:

CsVs þ CLVL ¼ C1V ¼ C1ðVs þ VLÞ ð11:2Þ

where C1 is the overall average composition, CS and CL are the compositions of the
solid and liquid, respectively, VS and VL are the volumes of the solid and liquid present,
and V = VS + VL is the total volume. We can rewrite this equation in the form:

ðC1 � CSÞVS ¼ ðCL � C1ÞVL ð11:3Þ

which is why it is called the lever rule. The closer the overall composition is to a phase
boundary, the more of that phase is present.

Defining g = VS/V as the volume fraction of solid, the compositions of the solid and
liquid at equilibrium can be written in terms of g and k as:

CL ¼
C1

1þ gðk� 1Þ
ð11:4Þ

CS ¼
kC1

1þ gðk� 1Þ

The lever rule is the classical expression for segregation of a components between two
phases, but it seldom applies in practice because the composition of the solid as it
forms is not uniform. It takes a very long time for the composition of a solid to become
uniform if there were significant non-uniformities grown into it during the growth
process.

The lever rule is often used as an approximation for analyzing fluid flow and seg-
regation during dendritic growth of alloys where the dendrites are slender and the
liquid channels between them are narrow, as illustrated in Fig. 11.2. The sample
in Fig. 11.2 was growing in a temperature gradient, and cooler on the left, so that
the volume fraction of solid increases towards the left, and the concentration of
the red dye in the interdendritic liquid also increases towards the left.
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There is a concentration gradient around the dendrite tip, but in the liquid channels
back from the tip, the concentration in the liquid is relatively uniform across the chan-
nels, because of the narrowness of the channels, and the relatively slow lateral growth
rate. The concentration in the liquid is close to the local equilibrium temperature as
given by the phase diagram, and so the concentration of dye in the liquid is higher at
the lower temperatures. The volume fraction at each temperature is given approxi-
mately by the lever rule. However, there is a variation in the composition in the solid
across the width of the dendrite stem. This can be ignored during the early stages of
the process if the k-value is small enough that there is little of the second component in
the solid. Ultimately, the liquid in the channel will freeze, and the composition of the
last solid to freeze will be very high. This is described by the Scheil equation.

11.3

Scheil Equation

The Scheil equation [1] is also called the normal freezing equation. It is based on the
assumption that the local composition of the solid does not change after it has formed.
It also assumes that the concentration of the liquid is uniform during the solidification
process. For k < 1, the first solid that forms contains less of the second component.
The second component that is rejected by the solid stays in the liquid, and so the
composition of the liquid increases as solidification proceeds. The composition of
the liquid is uniform throughout, but increases with time. So the composition of
the solid that forms, given by CS = kCL, also increases with time. The average compo-
sition of the final solid must be the same as the average composition of the starting
liquid.

Figure 11.2 Dendritic growth with a red dye. There was a temperature gradient

on the sample, so that the left end was colder.
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Defining g as the fraction solidified, we can write that the total amount of the second
component in the solid and the liquid is equal to the total amount of the second com-
ponent in the sample, as in Eq. 11.3, except that the concentration in the solid must be
expressed as an integral:

Zg

0

Csdx þ ð1� gÞCL ¼ C1 ð11:5Þ

In this form, the equation looks difficult to solve, but it can be converted into an or-
dinary differential equation by differentiating with respect to g:

CS þ ð1� gÞ dCL

dg
� CL ¼ 0 ð11:6Þ

Replacing CS with kCL and rearranging gives:

dCL

CL

¼ 1� k

1� g

� �
dg ð11:7Þ

which can be integrated to give:

ln CL ¼ �ð1� kÞ lnð1� gÞ þ constant ð11:8Þ

Applying the boundary condition that CL = C1 at g = 0 gives:

CL ¼ C1ð1� gÞk�1 ð11:9Þ

Figure 11.3 Composition distribution in the solid and the liquid for

“normal freezing”.
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The usual form of the Scheil equation is for the composition of the solid:

CS ¼ kC1ð1� gÞk�1 ð11:10Þ

Notice that for k < 1, the concentrations of the liquid and solid go to infinity at g = 1.
The solid that forms can have any shape. The factor g is the volume fraction that is

solid. But the fraction solidified is not given by the lever rule, since the composition of
the solid is not uniform.

This expression describes the composition of the solid that forms as the interden-
dritic liquid freezes. It can only be applied where the composition of the liquid is
uniform.

It does not apply at the dendrite tip, nor for unidirectional crystallization, where
there is boundary layer of the rejected components at the interface, which means
that the composition of the liquid is not uniform. The analysis has been applied to
unidirectional crystallization, but with an “effective” k-value that depends on the
growth conditions, as discussed in more detail below.

11.4

Zone Refining

With normal freezing, the first part of the solid to freeze is purer in the second com-
ponent than the last part to freeze. This effect can be used to purify a sample, by
discarding the last part of the sample to freeze. Pfann [2] realized that the efficiency
of the refining process could be improved by multiple freezing passes, but only if the
mixing in liquid could be eliminated on successive passes. So he invented zone refin-
ing, where only a small zone of liquid is melted and passed from one end of the sample
to the other. The next pass of a molten zone then acts on the distribution from the
previous pass, and the purity of the first part of the sample to freeze can be improved.

Figure 11.4 Zone refining.
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For zone refining, on the first pass, the change in the composition of the liquid when
an increment of the solid freezes can be written as:

ldCl ¼ ðC1 � CSÞdx ð11:11Þ

Where l is the zone length. Using an analysis similar to that in Eqs. 11.5 to 11.10, the
composition of the ingot after the first pass is:

CS ¼ C1 þ C1ðk� 1Þ exp � kx

l

� �
ð11:12Þ

This expression is only valid until the molten zone reaches the end of the sample. It
does not describe the composition distribution resulting from the final freezing of the
molten zone.

Repeated passes are very effective for purification, especially when the k-value is
small, as is the case for many of the impurities found in semiconductors.

This process was used in the early days of semiconductors to purify silicon. The
purified ingot was then used as starting material to grow single crystals by the Czo-
chralski method. Today, all of the silicon used for semiconductors is purified by dis-
tilling silane or a chlorosilane. The silanes are then cracked at a high temperature in
the Siemens process to deposit high-purity polysilicon, which is then converted to
single-crystal silicon using Czochralski growth. Zone refining is still used to purify
some of the elements used to make compound semiconductors. It is also used to
purify organic compounds, but it can only be used for compounds that can be melted
without decomposing.

11.5

Diffusion at a Moving Interface

11.5.1

Steady-state Diffusion at a Moving Interface

In this section we will examine the distribution of a second component resulting from
crystallization when there is no convective mixing in the melt [3]. The second com-

Figure 11.5 Unidirectional solidification at a constant velocity, v.
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ponent will be assumed to redistribute in the liquid by diffusion only. It will be as-
sumed that there is no diffusion in the solid. For the one-dimensional case, there is a
steady-state solution to the time-dependent diffusion equation. This steady-state solu-
tion is not like the approximate steady-state solutions discussed in Chapter 7. It is an
exact solution in a coordinate system that moves with the interface.

The one-dimensional time-dependent diffusion equation is:

D
@2C

@x2
¼ @C

@t
ð11:13Þ

The interface is assumed to be moving with a constant velocity, v. A new variable z,
which moves with the interface, is defined as:

z ¼ x � vt ð11:14Þ

The partial derivatives with respect to x and t can be expressed in terms of z:

@2C

@x2
¼ @

2C

@z2

@C

@t
¼ �v

@C

@z
ð11:15Þ

So that the diffusion equation becomes an ordinary differential equation that describes
the steady-state diffusion at the interface:

D
d2C

dz2
þ v

dC

dz
¼ 0 ð11:16Þ

which has the solution:

C ¼ A exp � vz

D

� �
þ B ð11:17Þ

where A and B are constants. The composition far from the interface is the starting
composition, C1, so the B = C1. The amount of the second component that is rejected
by the solid per unit time is given by the difference between the composition of the
liquid and the solid at the interface, (CL–CS)I, times the growth rate, v . The rejected
second component stays in the liquid, and at steady state, it must diffuse away from the
interface at the same rate:

vðCL � CSÞI ¼ �D
dC

dz

� �
I

ð11:18Þ

From Eq. 11.17, the concentration gradient at the interface is:

dC

dz

� �
I

¼ �A
v

D
ð11:19Þ

And so

A ¼ CL � CS ð11:20Þ
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For a steady-state solution, the concentration at the interface must not change in time.
As the interface moves, it is running into liquid of composition C1, and so at steady
state, it must be leaving behind solid of the same composition. If the composition of
the solid forming is C1, then the composition of the liquid at the interface from which
it is forming is C1/k. The composition distribution in the liquid is thus:

C ¼ C1 þ C1
1

k
� 1

� �
exp � vz

D

� �
ð11:21Þ

The composition of the final solid is the same as the composition of the initial liquid,
so this solution conserves the overall composition. The composition of the solid and
liquid at the interface for steady-state growth are indicated on the phase diagram in
Fig. 11.7.

Figure 11.6 Concentration distribution in the liquid.

Figure 11.7 Phase diagram showing the

concentrations at the interface.
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The concentrations at the interface are independent of the growth rate for steady-
state growth. The thickness of the boundary layer is given by the diffusion distance:

lD ¼ D=v ð11:22Þ

The thickness of the boundary layer depends on the growth rate. The solid rejects the
second component at a rate that depends on the growth rate. For steady-state growth,
the rejected second component must be carried away from the interface by diffusion.
For faster growth, the concentration gradient in the liquid must be steeper in order to
do this.

If the growth rate changes, then the width of the boundary layer also changes. For
example, if the growth rate increases, the second component is rejected faster, and the
diffusion process cannot keep up because the old concentration gradient is too flat. So
the concentration in the liquid at the interface increases, increasing the concentration
in the solid. This dumps the excess of the second component into the solid, until the
concentration gradient in the liquid becomes steep enough to remove the second com-
ponent at the new rate. The composition of the liquid and the solid at the interface then
return to the steady-state values.

Thus, a fluctuation in the growth rate produces a fluctuation in the composition of
the solid. When the diffusion boundary layer is thin, it is unlikely to be affected
strongly by convection in the melt, because the shear velocity at the interface is
small. But convection in the melt does result in temperature fluctuations, and these
temperature fluctuations cause growth-rate fluctuations, and the growth-rate fluctua-
tions cause fluctuations in the composition of the solid.

11.5.2

Initial and Final Transients

The initial composition of the liquid is C1, and so the composition of the first solid to
form will be kC1, as indicated by the phase diagram in Fig. 11.7. The composition
distribution is illustrated in Fig. 11.8.

Figure 11.8 Illustrating the initial and final transients.
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The steady-state boundary layer at the interface has height C1/k and a width D/v.
The material in the boundary layer came from the first part of the crystal to freeze, and
so the hatched areas in Fig. 11.8 must be equal. Since the height of the missing ma-
terial in the initial transient is k times that in the boundary layer in the liquid, the width
of the initial transient should be about 1/k times the width of the boundary layer in the
liquid. That is, its width should be about D/kv. A detailed analysis indicates that the
initial transient is approximately exponential in shape, with an exponent (–kvx/D). For
small k, the length of the initial transient is much greater than the thickness of the
boundary layer in the liquid.

All of the second component in the boundary layer gets dumped into the last part of
the solid to freeze.

As with the Scheil equation, the formal analysis [4] predicts that the composition in
the last bit of solid to freeze goes to infinity. In practice, the composition in the liquid is
likely to reach the eutectic composition or some other phase boundary before that
happens as indicated in Fig. 11.9.

Figure 11.9 Concentration distributions in a finite sample,

showing the steady-state values, and the initial and final transients.
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11.6

Segregation in Three Dimensions

The steady-state diffusion analysis above was done for one-dimensional solidification.
There is no corresponding steady-state solution for a cylinder or sphere. However,
there is still a boundary layer present at the interface in those cases, and the thickness
of the boundary layer is approximately the diffusion length, D/v. The first solid to form
will have the composition kC1, and the second component in the boundary layer will
be deposited in the last solid to freeze. This often results in the formation of a second
phase at grain boundaries where the last bit of solid to form is between two growing
grains, and the boundary layer is dumped there.

The stability of the growth fronts will be discussed in Chapter 12. These instabilities
result in cellular and dendritic growth forms, as illustrated in Fig. 11.2. Eutectic can
grow into the interdendritic liquid, as illustrated in Fig. 27.20. With these growth
morphologies, there is lateral segregation, parallel to the growth front, as is evident
in Fig. 11.2. The volume is subdivided by the instabilities into solid dendrites separated
by regions of liquid. There is a thin boundary layer of the second component at the
dendrite tip, but behind the growth front, the width of the liquid channels is small
enough so that the composition is uniform at the local equilibrium temperature in
the interdendritic liquid. All the red dye that remains in the liquid will be concentrated
in the interdendritic spaces that are last to freeze.

11.7

Burton, Primm and Schlicter Analysis

The Burton, Primm and Schlicter (BPS) [5] analysis describes the segregation where
there is both diffusion and convection in the melt, and so provides a bridge between
the Scheil equation and the diffusion-only analysis. Their analysis provides some in-
sight into the origin of the “effective” k-value that is used to fit experimental data to the
Scheil equation and to the zone-melting equations. BPS assumed that there is a bound-
ary layer of width d at the interface, and that the transport of the second component
within this region was by diffusion only. They assumed that the composition of the
liquid beyond this boundary layer was uniform, as illustrated in Fig. 11.10.

Fluid dynamicists do not like this simplification of a boundary layer in which no
convective flow occurs. But full-scale modeling of this problem is a major computa-
tional effort. The model is presented here to provide some insight into what is hap-
pening in the liquid ahead of an advancing interface when there is some diffusion and
some convection in the liquid. The liquid right at the interface does not flow along the
interface, and there is a region adjacent to the interface where the flow velocity is
reduced. The BPS analysis is a simplification of this situation.

In the diffusion zone, 0 � z � d, the steady-state diffusion equation is applied,

D
d2C

dz2
þ v

dC

dz
¼ 0 ð11:23Þ
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so that the composition distribution has the form of Eq. 11.17:

C ¼ Aþ B exp � vz

D

� �
ð11:24Þ

Applying the boundary condition for segregation at the interface, as in Eq. 11.18,

v CI
L � CI

S

� �
¼ �D

dC

dz

� �
I

¼ vB ð11:25Þ

gives

B ¼ CI
L � CI

S

� �
ð11:26Þ

so that

C ¼ Aþ CI
L � CI

S

� �
exp � vz

D

� �
ð11:27Þ

At z = d, the composition in the diffusion field is:

CL ¼ Aþ CI
L � CI

S

� �
exp � vd

D

� �
ð11:28Þ

This is assumed to be the composition throughout the liquid beyond d. This compo-
sition changes as solidification proceeds. Inserting this value of A into the expression
for C:

0 � z � d :CðzÞ ¼ CL þ CI
L � CI

S

� �
exp � vz

D

� �
� exp � vd

D

� �� �

d � z � L :C ¼ CL ð11:29Þ

Figure 11.10 Concentration distributions in the BPS analysis.
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At the interface,

CI
L ¼ CL þ CI

L � CI
S

� �
1� exp � vd

D

� �� �
ð11:30Þ

which can be rearranged to give:

1 ¼ CL

CI
S

� CI
L

CI
S

� 1

� �
exp � vd

D

� �
ð11:31Þ

Since

keff ¼
CI

S

CL

; and k ¼ CI
S

CI
L

ð11:32Þ

Equation 11.31 can be written as:

keff ¼
1

1þ 1

k
� 1

� �
exp � vd

D

� � ð11:33Þ

For d = 0, keff = k, which corresponds to the Scheil equation.

For d = 1, keff = 1, which is the diffusion-only solution.

Experimental data for the distribution of a dopant in a directionally grown crystal can
often be fitted with the Scheil equation, using an effective k-value. Similarly, the dis-
tribution of a dopant after one-pass zone melting can be fitted with Eq. 11.12, using an
effective k-value. The BPS analysis suggests why this works, and what determines the
effective k-value. The effective k-value in the BPS model depends strongly on d, and in
practice, d is difficult to estimate. It depends on the vigor of the convection in the melt,
which in turn depends on the temperature gradients, the shape of the growth contain-
er, the growth rate, etc. This means that there is no simple way to predict keff. But it is
reasonably similar for successive growth runs in the same equipment.

The equilibrium k-value applies at the interface, and so there is always an enriched
boundary layer there. The convective velocities in the melt are zero right at the inter-
face, and so mixing there is primarily by diffusion. The contribution of convective flow
to the mixing increases with distance from the interface. The liquid composition far
from the interface is best described as uniform if there is convection in the melt, as is
assumed in the derivation of the Scheil equation. Even though the composition profile
of a solidified sample can be fitted to the Scheil equation with an effective k-value, the
onset of interface instability in the same sample is often correctly predicted by the
diffusion-only solution, using the equilibrium k-value. This apparently anomalous
state of affairs is possible because using an effective k-value in the Scheil equation
compensates for the presence of the boundary layer, and the composition gradient
right at the interface is not affected significantly by the convective flow. The instability
of the interface, which is discussed in Chapter 12, depends on the composition gra-
dient right at the interface.
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Problems

1. Write a finite difference program and calculate the final concentration distribution
of a dopant with an initial concentration of 1 % after directional solidification in a
sample 10 cm long. Assume a k-value of 0.1, a diffusion coefficient 5 �
10�5 cm2 s�1, and constant growth rate of 1 mm/min.

2. Discuss the final concentration distribution of a small amount of a second com-
ponent in a sample after directional solidification.

3. Derive Eq. 11.12.
4. A Czochralski silicon crystal that is about one meter in length is grown in eight

hours, so that a crystal can be grown by a worker in one shift. For a diffusion
coefficient in the liquid, D = 5 � 10�5 cm2 s�1, what is the thickness of the diffu-
sion boundary layer?

5. Some dopants in silicon have a k-value that is approximately 10�3. What is the
characteristic length of the initial transient (where the concentration reaches e
times its initial value) for such a dopant in a Czochralski crystal?

6. Crystals that are grown from solution are grown much more slowly, at a rate of
perhaps 1 mm/day. For a liquid diffusivity, D = 5� 10�5 cm2 s�1, what is the diffu-
sion length? What does this imply about the concentration in a growth vessel that is
20 cm in diameter?

7. The thermal diffusion length is the thermal diffusivity divided by the growth rate.
For a thermal diffusivity of 0.1 cm2 s�1, what is the thermal diffusion length for the
solution growth in Problem 6?

8. What is the diffusion distance for a solid-state transformation that is proceeding at
a rate of 1 mm/min in a solid where the diffusion coefficient is 10�10 cm2 s�1?

9. Nickel dendrites have been observed to grow into supercooled molten nickel at
40 m s�1. For a diffusion coefficient, D = 5 � 10�5 cm2 s�1, what is the diffusion
distance at this growth rate?

10. For a thermal diffusivity of 0.1 cm2 s�1, what is the thermal diffusion distance
ahead of the growing nickel dendrite?
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Chapter 12

Interface Instabilities

The steady-state solution to the diffusion equation for a second component when a
sample of constant cross section is freezing from one end at a constant growth
rate, v, is given by Eq. 11.21. The steady-state solution is based on a coordinate system
that moves with the interface at the velocity, v. But that solution is not mathematically
unique. Under some conditions, the interface is unstable to perturbations, and we will
discuss these instabilities in this chapter.

There are many cases where there is a valid mathematical solution that is not stable.
For example, if a cylinder is held so that it is not horizontal and a ball is started rolling
down from the upper end, a perfectly valid solution is that the ball will roll straight
down the upper edge of the cylinder. But that is unlikely to happen in practice because
any slight perturbation in the surface of the cylinder will deflect the ball so that it rolls
sideways off the cylinder. There are in fact, multiple solutions for the path of the ball.

Another example is that of a flapping flag. There is a valid solution where the flag
flies straight out in the breeze. But a small perturbation makes the flag look like an
airfoil, generating a pressure difference that increases the size of the perturbation. But
the perturbation cannot grow indefinitely, because the breeze will blow it back when it
gets too big. And so the perturbation travels down the flag, and it flaps. This is complex
time-dependent behavior, rather than the much simpler behavior of a non-flapping
flag.

The motion of an interface can also present complex, time-dependent behavior, as is
discussed below.

12.1

Constitutional Supercooling

The steady-state solution that we derived for diffusion in the liquid becomes unstable
when there is constitutional supercooling [1] in the liquid ahead of the interface.

Figure 12.1 shows the steady state concentration profile that we obtained.
The concentration of the phase that forms is the same as the initial concentration,

C1, and the concentration at the interface is much greater, C1/k. Equation 11.21,
which we derived for the concentration in the liquid is:

Kinetic Processes. Kenneth A. Jackson
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C ¼ C1 þ C1
1

k
� 1

� �
expð�vz=DÞ ð12:1Þ

The growing phase always rejects those components that lower the melting point. So
the melting point of the liquid at the interface is lower than that of the starting material.

On the phase diagram, Fig. 12.2, the liquidus temperature for the starting concen-
tration, TL(C1), is much higher than the liquidus temperature for the concentration,
TL(C1/k), at the interface.

It is usual to make the approximation that the liquidus line is a straight line, so that
there is a linear relationship between the composition and the corresponding liquidus
temperature, given by:

TL ¼ Tm �mC ð12:2Þ

where m is the slope of the liquidus line.
The melting point of the alloy increases as the composition of the second component

decreases. The composition of the liquid ahead of the interface decreases with dis-
tance, so the melting point of the liquid increases with distance from the interface.

Figure 12.1 Steady-state concen-

tration distribution ahead of an

advancing interface.

Figure 12.2 Phase diagram corre-

sponding to Fig. 12.1.
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If the temperature of the sample is uniform at the melting point of the material at
the interface where the concentration is C1/k, the liquid far from the interface, where
the concentration is C1, will be below its melting point. It will be supercooled by an
amount TL(C1)–TL(C1/k).

Usually there is a positive temperature gradient at the interface, so that the liquid is
hotter than the solid. But even under these conditions, when the liquid is all hotter
than the solid, there can still be supercooled liquid, because the composition of the
liquid also changes. This is known as constitutional supercooling. The boundary layer
depresses the melting point at the interface and so, and even though the liquid is
hotter, there can still be supercooled liquid ahead of the interface.

In Fig 12.3, the actual temperature of the sample has been plotted, assuming that the
liquid is hotter than the solid, and that the temperature increases linearly with dis-
tance. The temperature at the interface is assumed to be the equilibrium temperature
for the composition there. On the same plot is the liquidus temperature corresponding
to the local composition. This curve can be constructed by noting the composition at
some distance from the interface as in Fig. 12.1, going to the phase diagram, Fig. 12.2,
to determine the corresponding liquidus temperature, and then plotting this tempera-
ture at the corresponding distance from the interface. This gives the local melting
point as a function of distance ahead of the interface. This curve can be calculated
by inserting Eq. 12.1 into Eq. 12.2.

For a shallow temperature gradient, most of the liquid will be at a temperature below
its local melting point. For a steeper temperature gradient, less of the liquid will be
below its melting point. There is some critical temperature gradient above which there
will be no constitutional supercooling.

This critical value can be calculated as follows. The composition gradient at the
interface is obtained by evaluating the derivative of Eq. 12.1 at the interface:

dC

dz

� �
I

¼ � v

D
C1

1

k
� 1

� �
ð12:3Þ

Figure 12.3 Actual temperature and liquidus temperature of the liquid.
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The rate at which the liquidus temperature increases with distance ahead of the inter-
face, as indicated in Fig. 12.3, is obtained by multiplying the concentration gradient in
Eq. 12.3 by m, which is the slope of the liquidus line on the phase diagram. This slope
is then compared with the actual temperature gradient, G = dT/dx, in the liquid. If the
slope of TL is greater than G, there is constitutional supercooling in the liquid.

For constitutional supercooling:

G < mC1
1

k
� 1

� �
v

D
ð12:4Þ

There is no constitutional supercooling for

G > mC1
1

k
� 1

� �
v

D
ð12:5Þ

For materials that have rapid growth kinetics, such as the metals and semiconductors,
where the growth rate is not limited by surface nucleation effects, the interface shape is
determined by diffusion processes. When there is no constitutional supercooling the
interface will follow an isotherm, as illustrated in Fig. 12.4a.

Figure 12.4 a) Planar interface growth in a thin cell. The interface temperature is very close to the melting

point isotherm. The small grooves are due to grain boundaries. b) Cellular growth in the same growth cell.

a) b)
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When constitutional supercooling is present, the interface becomes unstable, and
cells form, as shown in Fig. 12.4b. The crystals in Fig. 12.4 were growing in a thin
transparent container, and are seen in profile. In a thicker sample, the cells form a
fairly regular hexagonal array, as in Fig. 12.5, which is why this is known as a cellular
substructure.

More of the second component results in more constitutional supercooling, and the
cells become more elongated and separated. Still more of the second component results
in dendritic growth, as shown in Fig. 11.2, where the cells have become so elongated and
separated that they develop side branches. Dendritic growth is discussed in Chapter 26.

What is happening here is that, if a plane interface gets a bump on it, then the bump
can get rid of second component more readily than the flat interface can, as illustrated
in Fig. 12.6.

If the bump also sees a supercooled region ahead in the liquid, it will grow faster
than the average interface. And so constitutional supercooling leads to interface in-
stability. A stability analysis of the interface is presented in the next section.

Figure 12.5 Cellular growth on a decanted interface.

Figure 12.6 A second component will diffuse more rapidly away from a bump on

the interface.
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There is a simple interpretation of the constitutional supercooling condition, which
also provides a simple way to remember it. On the phase diagram, Fig. 12.2, the li-
quidus temperature for the initial concentration of the liquid, TL(C1), is given by
TM–mC1. The liquidus temperature for the liquid concentration at the interface,
TL(C1/k) is TM–mC1/k. The difference between these two temperatures is
mC1(1/k–1), which is the first part of the right-hand side of Eq. 12.4. But this tem-
perature difference is also the difference between the liquidus and solidus tempera-
tures at the composition C1, which we will call DT(C1). So:

mC1ð1=k� 1Þ ¼ TLðC1Þ � TLðC1=kÞ ¼ �TðC1Þ ð12:6Þ

Recalling that D/v is the diffusion length, lD, the constitutional supercooling condition,
Eq. 12.4 can be written as:

G <
�TðC1Þ

lD

ð12:7Þ

So the constitutional supercooling condition compares the actual temperature gradi-
ent in the sample with the temperature gradient obtained by dividing the temperature
difference between the liquidus and the solidus for the initial composition by the
diffusion length.

Constitutional supercooling can be present for fairly small concentrations of a sec-
ond component, as can be seen by inserting some typical numbers into Eq. 12.4. A
temperature gradient of about 100 8C/cm is fairly typical for melt growth. The heat flux
necessary to maintain such a temperature gradient is given by multiplying this
gradient by the thermal conductivity. For aluminum, the corresponding heat flux
is 130 W/cm2, for alumina it is 20 W/cm2, and for silicon it is 94 W/cm2. For a
12-inch diameter silicon boule, this amounts to a total of 50 kW. Using k = 0.1, a
liquidus slope, m = 1 degree/per cent concentration, and a growth rate of 1 mm/
min = 1/600 cm s�1, the critical concentration above which there will be constitutional
supercooling is:

Cc:s:
1 ¼

100� 5� 10�5 � 600

1� 1

0:1
� 1

� � � 0:3% ð12:8Þ

So materials that are nominally pure (but not very pure) will exhibit constitutional
supercooling under fairly typical growth conditions. For a second component that
has k = 0.001, as do several dopants in silicon, the critical composition for the
same growth conditions is 30 ppm. For a k-value close to 1, several per cent of the
second component will not cause constitutional supercooling.

For solidifying metals, the presence of cells or even dendrites often does not have a
deleterious effect on properties. In many cases, alloying elements are added to en-
hance the properties. But in the growth of semiconductor or optical crystals, inhomo-
geneities in composition are bad, so interface instabilities are to be avoided. In addi-
tion, the presence of interface instabilities often leads to the creation of other crystal-
line defects, which can be even worse.

12 Interface Instabilities148



12.2

Mullins and Sekerka Linear Instability Analysis

We derived an expression for the diffusion field in the liquid ahead of an interface that
was advancing at a constant rate, v. The analysis was carried out in a coordinate system
that moved with the interface. The planar front solution that we found is a valid solu-
tion. The discussion of constitution supercooling indicated that this analysis, although
valid, is probably not stable, and therefore not a unique solution. In this section, the
stability analysis of an interface as it was first done by Mullins and Sekerka [2], will be
outlined. The analysis concludes that an infinitesimal perturbation of the interface will
grow if a condition that is very similar to the constitutional supercooling condition is
obeyed.

We employ, as before, a coordinate system that moves with the interface at an aver-
age velocity V. z is the distance ahead of the moving interface.

We start with a sinusoidal perturbation of the interface that has a very small am-
plitude d, and a wavelength 2p/x.

ZI ¼ dðtÞ sinxx ð12:9Þ

We will ask the question: does the amplitude d increase or decrease with time? We will
do a linear stability analysis, which means that we assume that d is small, so we will
keep only terms that are linear in d in our analysis, and throw out terms that are higher
order in d. Our solution will be valid only for small values of d. It will indicate whether a
perturbation will initially grow or shrink, but it does not describe how the interface
shape evolves after it begins to grow.

The equilibrium temperature along the interface will depart from the melting point
of the pure material because of the variations in the concentration and in the curvature
along the interface:

TM � TIðx; tÞ ¼ mCIðxÞ �
TMr

LrI

ð12:10Þ

The first term on the right is due to variations in the concentration of the second
component along the interface, and the second term is due to the variations in the

Figure 12.7 Sinusoidal perturbation of an interface.
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curvature of the interface. This second term is due to the Gibbs–Thompson effect,
which will be derived in Chapter 15 when we discuss nucleation. Here TM is the melt-
ing point of the pure material, CI(x) is the concentration of the second component
along the interface, and m is the slope of the liquidus line, so that mCI(x) is the local
melting point depression. r is the surface tension, L is the latent heat and r is the
radius curvature of the interface given approximately by:

1

rI

¼ d2ZI

dx2
ð12:11Þ

So we can write Eq. 12.10 as:

TIðx; tÞ ¼ TM �mCIðxÞ �
TMr

L
dðtÞx2 sinðxxÞ ð12:12Þ

The local growth rate of the interface depends on the average rate of motion of the
interface, plus a term that depends on the rate at which the amplitude of the perturba-
tion is growing or shrinking, _dd ¼ dd/dt.

vðxÞ ¼ Vþ _dd sinðxxÞ ð12:13Þ

As in the derivation of Eq. 11.21, we will assume that the ratio of the solid concentra-
tion to the liquid concentration at the interface is k. The boundary condition at the
interface is similar to Eq. 11.18, except that it is applied at each point along the inter-
face:

D
dC

dz

� �
I

¼ �ð1� kÞCIðxÞvðxÞ ð12:14Þ

The thermal gradient in the solid must carry away both the heat conducted to the
interface through the liquid, and the latent heat generated at the interface by the so-
lidification process:

KSGS ¼ vLþ KLGL ð12:15Þ

where KS and KL are the thermal conductivities of solid and liquid, respectively, and GS

and GL are the corresponding thermal gradients.
We will assume that the thermal field is not affected by the perturbation of the

interface, because the wavelength of the perturbation is small compared to the ther-
mal diffusion distance. This means that we will not consider variations in temperature
along the interface, in the x direction. Since the perturbation of the interface is sym-
metric, the thermal fields in the two phases are effectively averaged. We will replace the
actual temperature gradients in the z direction in the liquid and solid with an average
temperature gradient, G:

TI ¼ T0 þGz ð12:16Þ

where

G ¼ KSGS þ KLGL

KS þ KL

ð12:17Þ
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In their original analysis, Mullins and Sekerka did not make this assumption, but their
analysis indicates that it is valid, and it simplifies our analysis.

We will look for a solution that has a variation of the composition along the interface
of the form:

CI ¼ C0 þ bZI ¼ C0 þ bd sinðxxÞ ð12:18Þ

Here C0 is the average composition of the liquid at the interface, which is equal to
C1=k, where C1 is the composition of the liquid far from the interface. Combining
Eqs. 12.12, 12.16 and 12.18, we have at the interface:

T0 þ GZI ¼ TM �mC0 �mbZI �
TMr

L
x2ZI ð12:19Þ

The terms without ZI give:

T0 ¼ TM �mC0 ð12:20Þ

and the terms with ZI give:

b ¼ � 1

m
Gþ TMrx2

L

� �
ð12:21Þ

We now seek a solution to the steady-state diffusion equation:

D
@2C

@z2
þ @

2C

@x2

� �
þ v

@C

@z
¼ 0 ð12:22Þ

which has a composition at the interface given by Eq. 12.18. Such a solution is:

Cðx; zÞ ¼ C0 þ
GCD

V
1� exp � vz

D

� �
þ dðb� GCÞ sinðxxÞ � expð�x�zÞ

h i
ð12:23Þ

where

GC ¼
V

D
C0ðk� 1Þ ¼ V

D
C1 1� 1

k

� �
ð12:24Þ

and

x� ¼ V

2D
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

2D

� �2

þx2

s
ð12:25Þ

x* is a new wave number that depends on both the wavelength of the perturbation and
on the diffusion distance.

From Eq. 12.23, the concentration gradient at the interface is given by:

dC

dz

� �
I

¼ GC þ ZI GC þ x� � V

D

� �
� bx�

� �
ð12:26Þ

where only the terms that are linear in ZI have been retained. Using Eq. 12.14, we can
now write:
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Vþ _dd sinðxxÞ ¼ D

ðk� 1ÞC0

GC þ ZI GC x� � V

D

� �
� bx�

� �
� vGC

C0

ZI

� 	

ð12:27Þ

The terms that do not contain _dd or ZI give:

V ¼ DGC

ðk� 1ÞC0

ð12:28Þ

as is Eq. 12.24, and the terms that contain _dd or ZI give:

_dd

d
¼ V

mGC

mGC x� � V

D

� �
þ x� � ð1� kÞV

D

� �
Gþ TMrx2

L

� �� �
ð12:29Þ

For small k we can write this as:

_dd

d
¼ � V

mGC

x� � V

D

� �
�mGC �G� TMrx2

L

� �
ð12:30Þ

The first term in the square brackets is due to the composition field, the second is due
to the thermal field, and the third term is due to the surface tension acting on the
interface curvature.

When the right-hand side of this equation is positive, the perturbation will grow.
When it is negative, it will shrink. GC is negative for k < 1, and x* is always greater
than V/D, so the factors outside the square bracket are positive. When the square
bracket is positive, the perturbation will grow. The composition term mGC is posi-
tive, because GC is negative, so it tends to make the perturbation grow. The thermal
and surface tension terms in the square bracket are negative, so these tend to make the
perturbation decay, stabilizing the interface. The surface tension term is usually small,
so that the major competition is between the composition field and the thermal field.

The perturbation will grow when the composition term in the square brackets is
larger than the thermal term. This happens when

G < mC1
1

k
� 1

� �
V

D
ð12:31Þ

which is similar to the constitutional supercooling condition, Eq. 12.4.

12.3

Anisotropic Interface Kinetics

When crystals are grown from a solution growth, the whole solution is undercooled,
and yet the interface of the growing crystal does not become unstable unless the under-
cooling is quite large. For anisotropic interface kinetics, the slowest growing faces

Figure 12.8 Rapid lateral growth tends to

stabilize an interface.
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form the external boundary of the crystal. These faces form facets that are relatively
resistant to instabilities. A perturbation on these faces is quickly removed by rapid
lateral growth, to reform the facet, as in Fig. 12.8.

This situation is much more complex to analyze than the case of isotropic growth,
because lateral growth into the depressions changes the shape of the perturbation, not
its amplitude. For small anisotropies, it has been shown [3] that the anisotropy tends to
stabilize the growth front:

G

V
<

mC1
D

� �
1

k
� 1

� �
� h ð12:32Þ

where h is a term due to the anisotropy of the growth rate. The stability of an interface
where the anisotropy of the growth rate is large has not been solved for the general
case.

Crystals grown in solutions are always grown under conditions where the interface
would be unstable if it were not for the anisotropy in the growth rate. Experimentally,
crystal growers like to grow their crystals as rapidly as possible, which means using an
undercooling (supersaturation) which is as large as possible, because the growth rate
increases with supersaturation. But if the supersaturation is too large, the interface will
become unstable, resulting in a poor quality crystal. The fastest growth rate at which
good crystals can be grown is usually determined empirically.
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Problems

1. Discuss the growth forms that result from interface instabilities during melt
growth.

2. A crystal is growing at a rate of 10 mm/min from a liquid containing 0.1% of a
dopant in a temperature gradient of 100 8C cm�1. The k-value (distribution coeffi-
cient) for the dopant is 0.1, its diffusion coefficient in the liquid is 10�4 cm2 s�1, and
it depresses the melting point 1 8C for each per cent in the liquid. Discuss the
interface shape.
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Chapter 13

Chemical Reaction Rate Theory

Chemical reaction rate theory [1] is used to describe homogenous reactions, that is, reac-
tions that occur in only one phase. The reaction can take place in a gas phase, in a liquid
solution, or even a solid solution. The model applies when the interaction takes place
between isolated atoms or molecules that come together and then react to form a product.

13.1

The Equilibrium Constant

A simple reaction between two species, A and B, to form a third species, C, is described by:

aAþ bBÐ cC ð13:1Þ

where a, b, and c are the numbers of atoms or molecules of each species that are
involved in the reaction. The equilibrium constant, K, for the reaction is given by:

K ¼ ½C�c

½A�a½B�b
ð13:2Þ

where the square brackets indicate the number of atoms or molecules of the species
per unit volume, for example:

½C� ¼ nc

V
ð13:3Þ

The equilibrium constant, K, gives the ratio of the concentration of the product to the
concentrations of the reactants.

13.2

Reaction Rate Theory

The reaction path between the reactants and the product for the reaction:

Aþ BÐ C ð13:4Þ

is illustrated schematically in Fig. 13.1.
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G1 and G2 are the free energies in the initial and final states, respectively, and G* is
the highest free energy along the reaction path. G* depends on the reaction path as A
and B come together, and can be different for different conditions, for example, when a
catalyst is present. For simple cases, the energy along the reaction path can be calcu-
lated from quantum mechanics. The reaction rate for the reaction in Fig. 13.1 is pro-
portional to the number of A atoms per unit volume, times the probability that a B
atom will be next to it, times the probability that they will have enough energy to get
over the barrier to the reaction:

½A�½B� exp �ðG� � G1Þ=kT
� �

ð13:5Þ

where kT is Boltzmann’s constant times the temperature. At equilibrium, this forward
rate will be equal to the reverse rate:

½C� exp �ðG� � G2Þ=kT
� �

ð13:6Þ

or

½C� ¼ ½A�½B� exp �ðG2 � G1Þ=kT
� �

¼ ½A�½B� exp ��G

kT

� �
ð13:7Þ

where DG = G2 – G1.
The equilibrium constant is thus:

K ¼ expð��G=kTÞ ð13:8Þ

It depends only on the free energies of the initial and final states. It does not depend on
the reaction path, which determines the rates, or on how long it takes to reach equili-
brium.

In a reaction starting with only reactants A and B present, the number of product
species will increase and the number of reactants will decrease until the net rate is
zero.

Figure 13.1 Free-energy variation

along the reaction path.
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13.3

Reaction Rate Constant

For a reaction

aAþ bB! cC ð13:9Þ

with no back flux, the rate of production of C is:

1

V

dnc

dt
¼ d

dt
½C� ¼ k�½A�a½B�b ð13:10Þ

where k* is the reaction rate constant. a and b are not necessarily equal to a and b, but
they are usually close. Valuable information about many reactions can be obtained
from the order of the reaction, which is defined as follows:

The overall reaction is of order a + b.
The reaction is of order a in A.
The reaction is of order b in B.

13.4

Transition State Theory

For the reaction:

Aþ B! C ð13:11Þ

There will be no back flux if the free energy in state 2 is very low, so that G*–G2 is large,
as illustrated in Fig. 13.2.

We assume that there is a transition state complex (AB)* that has free energy
corresponding to the maximum along the reaction path, and that the concentration

Figure 13.2 Free-energy variation along the reaction path with no back flux.
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of this complex is in equilibrium with the reactants. The equilibrium constant for this
transition state is:

K�½A�½B� ¼ ðABÞ�½ � ¼ ½A�½B� exp �ðG� �G1Þ=kT
� �

ð13:12Þ

The rate of formation of the product C is a frequency times the concentration of the
transition state. The frequency is usually taken to be approximately the Debye fre-
quency, kT/h, where h is Planck’s constant

d½C�
dt
¼ k�½A�½B� ¼ kT

h
ðABÞ�½ � ð13:13Þ

So the reaction rate constant, k*, is approximately given by:

k� ¼ kT

h
K� ¼ kT

h
exp½��G�=kT� ð13:14Þ

where DG* = G*–G1.
Writing DG* = DH* - TDS*, the reaction rate constant can be written as k�0 times a

Boltzmann factor:

k� ¼ k�0 expð��H�=kTÞ ð13:15Þ

where:

k�0 ¼
kT

h
expð�S�=RÞ ð13:16Þ

The Debye frequency does not change very much over a limited temperature range,
whereas the Boltzmann factor does.

13.5

Experimental Determination of the Order of a Reaction

First-order reaction:

A! product ð13:17Þ

Examples are nuclear decay, Newton’s law of cooling, and outgassing of a solid where
the rate of outgassing is limited by the evaporation rate not by diffusion in the solid.

The time dependence of the concentration of A is:

d½A�
dt
¼ �k�½A� ð13:18Þ

which has a solution:

½A� ¼ ½A0� expð�k�tÞ ð13:19Þ

For a first-order reaction, plotting the logarithm of the concentration against time will
give a straight line with a slope –k*, and the intercept at t = 0 is [A0], as in Fig. 13.3.
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In a second-order reaction, two entities come together:

d½A�
dt
¼ �k�½A�2 ð13:20Þ

Examples are:

2A ! product
A + B ! product
N + N ! N2

Na + Cl ! NaCl
Interstitial þ vacancy ! 0

On solving Eq. 13.20, the time dependence of the reaction is given by:

1

½A� �
1

½A0�
¼ k�t ð13:21Þ

so that plotting 1/[A] against time will give a straight line, with a slope k*, and an
intercept 1/[A0] as in Fig. 13.4.

A reaction of order n involves n entities coming together:

d½A�
dt
¼ �k�½A�n ð13:22Þ

The time dependence of the reaction is given by:

1

n� 1

1

½A�n�1 �
1

½A0�
n�1

" #
¼ k�t ð13:23Þ

Defining the time rate of change of concentration of the reactants, d½A�=dt � �r,
Eq. 13.22 can be rewritten as:

ln r ¼ ln k� þ n ln½A� ð13:24Þ

Figure 13.3 Plot for a first-

order reaction.
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The order of the reaction can be determined by recording the time rate of change of
concentration, as in Fig. 13.5a, to determine r, and then plotting the logarithm of r
against the logarithm of the concentration, [A], as in fig 13.5b.

The slope of the line in Fig 13.5b gives n, the order of the reaction, which is the
number of species involved in the reaction.

These methods work only for cases where there is no back reaction.

13.6

Net Rate of Reaction

When the reaction is reversible so that there is a back flux, for example, as illustrated
above in Fig. 13.1, the forward rate can be written:

kT

h
½A�½B� exp �ðG� � G1Þ=kT

� �
¼ k�½A�½B� ð13:25Þ

And the reverse rate is:

kT

h
½C� exp �ðG� � G2Þ=kT

� �
¼ kT

h

½C�
K

exp �ðG� �G1Þ=kT
� �

¼ k�
½C�
k

ð13:26Þ

The net rate is the difference between these two:

d½C�
dt
¼ k� ½A�½B� � ½C�

K

� �
ð13:27Þ

where k* is the forward reaction rate constant and K is the equilibrium constant. The
bracket is zero at equilibrium, and the rate of approach to equilibrium is proportional
to the departure from equilibrium. Equation 13.27 can be written in expanded form as:

Figure 13.4 Plot for a second-

order reaction.
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d½C�
dt
¼ kT

h
exp

�S�

R

� �
exp ��H�

kT

� �
½A�½B� � ½C� exp

�G

kT

� �
ð13:28Þ

In this form it is evident that the reaction rate consists of three factors. The first is a
more-or-less constant prefactor that is a frequency times a constant that depends on
the entropy difference. The second is a Boltzmann factor containing the enthalpy dif-
ference. The third is a term that depends on how far the system is from equilibrium.

The time evolution of the concentrations is described by a differential equation. For
this simple reaction, the differential equation can be solved readily. The time depen-
dence of the concentration of the product can be calculated if the initial concentrations,
the equilibrium constant and the reaction rate constant are known.

Often there are several or many reactions taking place at the same time, with the
product from one reaction being a reactant in the next reaction. The coupled differ-
ential equations describing the overall reaction can be quite difficult to solve, even if all
the equilibrium constants and reaction rate constants are known. There are computer
programs that are designed to solve these coupled differential equations.

Figure 13.5 Plot for an nth-order reaction. a) concentration

versus time, b) logarithm of r versus logarithm of concentration.

a)

b)
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13.7

Catalysis

An effective catalyst reduces the maximum free energy, G*, along the reaction path. It
does not change the free energies of the initial or final states. It does not change the
equilibrium condition. It reduces the time to get to equilibrium, or in a non-equili-
brium system, it reduces the time for a reaction to take place.

There are homogeneous catalysts and heterogeneous catalysts.
Homogeneous catalysts are usually molecules that are dispersed homogeneously

with the reactants. The reactants combine with the catalyst molecule, react, and
then the product separates from the catalyst molecule.

Heterogeneous catalysis takes place on a surface. For a surface to be effective as a
catalyst, the reactants must adsorb onto the surface, react there to form the product,
and then the product must desorb, as illustrated in Fig. 13.6. So the reactants and
products must bind to the surface, but not too strongly. If the products do not des-
orb, the catalyst will become covered with the product, and will no longer be effective.

The most widely used heterogeneous catalyst is platinum. Platinum is relatively
inert, it has a relatively high melting point, and the platinum atom can polarize readily
because it has many electrons. The polarizability means that the electronic charge on
platinum can distort and so atoms or molecules will have van der Waals attraction to its
surface. These are relatively weak bonds, so that the products can desorb readily. Most
of the processing of bulk chemicals for fertilizers, plastics, etc. use platinum as a cat-
alyst.

The catalyst should have a large surface area, but a fine powder of pure platinum
tends to sinter into bigger particles well below its melting point, which reduces the
surface area. So platinum is usually coated onto a ceramic material that has a very large
surface area. The ceramic is often alumina (Al2O3) or ceria (CeO2) that has been pre-
pared as a very fine powder, and then partially sintered. The very high melting points of
these ceramic materials precludes further sintering at usual operating temperatures.

An example is the catalyst in your car. It is usually platinum on alumina. The cat-
alytic converter on your car has a complex task. It is designed to oxidize hydrocarbons
to make H2O and CO, and to further oxidize the CO to CO2, while at the same time
reducing nitrous oxides, NOx, to N2. It turns out that a catalytic converter can do both
reasonably well provided that the air-to-fuel ratio going through it is correct. 75 to 80 %
conversion for both the oxidation of CO and the reduction of NOx can be achieved at an
air-to-fuel ratio of 14.6, as illustrated in Fig. 13.7.

Figure 13.6 The reactants adsorb onto the surface of a heterogeneous catalyst,

react, and then the product desorbs.
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13.8

Quasi-Equilibrium Model for the Rate of a First-Order phase Change

The rate at which an atom or molecule proceeds from state 1 to state 2, can be written
in a form similar to Eq. 13.25 as:

R1:2 ¼
kT

h
exp �ðG

� � G1Þ
kT

� �
¼ R0

1:2 exp
G1

kT

� �
ð13:29Þ

where kT/h is the Debye frequency, which is approximately the atomic vibrational
frequency, G1 is the free energy of the system in state 1, and G* is the free energy
of the activated state, which is the state of highest free energy along the reaction
path between states 1 and 2, as illustrated in Fig. 13.1.

Similarly, the rate for the reverse reaction is given by:

R2:1 ¼
kT

h
exp �ðG

� � G2Þ
kT

� �
¼ R0

2:1 exp
G2

kT

� �
ð13:30Þ

The rate of the reaction depends on the properties of the initial state.
The net reaction rate can be written:

R1:2 � R2:1 ¼
kT

h
exp �ðG

� �G2Þ
kT

� �
exp

�G

kT

� �
� 1

� �
ð13:31Þ

where DG = G2–G1. The term in the square bracket can be approximated for small
DG/kT:

exp
�G

kT

� �
� 1

� �
� �G

kT
ð13:32Þ

For small departures from equilibrium, the reaction rate, Eq. 13.31, can be written:

R1:2 � R2:1 �
kT

h
exp �ðG

� �G1Þ
kT

� �
�G

kT

� �
¼ R0

�G

kT

� �
ð13:33Þ

Figure 13.7 Conversion

efficiency of an automobile

catalytic converter.
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This formalism contains no details about the physical processes involved in a first-
order phase transformation, which is the subject of Chapters 20 and 21. It does predict
that the transformation rate depends on the free-energy difference between the two
phases, and for small departures from equilibrium, it predicts that the transformation
rate is linearly proportional to the free energy difference, DG. This conclusion is gen-
erally valid, but all the other details are buried in R0.
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Problems

1. Discuss the difference between the temperature dependences of the equilibrium
constant and the reaction rate constant.
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Chapter 14

Phase Equilibria

Phase changes can be first order, second order or higher order. These will be discussed
below, together with the definitions and characteristics of each.

14.1

First-Order Phase Changes

First-order phase changes take place between two different states of matter: vapor and
solid, liquid and solid, two different solid phases, and usually between vapor and li-
quid.

The essence of a first-order phase change is that it is inhomogeneous in space. For
example, part of the sample is liquid and part is solid. At the equilibrium temperature
between the two phases, the interface separating them is stationary. The interface
moves to create more or less of one of the two phases if it is above or below the equili-
brium temperature. As the interface moves, the difference between the enthalpies of
the two phases, also known as the latent heat, must be supplied to or removed from the
interface region. This heat is generated (or absorbed) at essentially the same tempera-
ture as the interface moves through the sample. A large amount of heat is requires to
go from just below the equilibrium temperature to just above the equilibrium tem-
perature. The input of heat does not change the temperature, it changes the relative
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Figure 14.1 Gibbs free energy as a function

of temperature for a solid and a liquid.
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amounts of the two phases. And so the heat content of the material is discontinuous
with temperature – which is the formal definition of a first-order phase change.

Figure 14.1 illustrates the Gibbs free energy as a function of temperature for a solid
and liquid. The free energies of the two phases are equal at the equilibrium tempera-
ture, which is referred to as the melting point. The equilibrium phase is the one with
the lower free energy, and so there is a discontinuity in the slope of the equilibrium
free-energy curve at the melting point.

We can write the free energy of the solid as:

GS ¼ HS � TSS ð14:1Þ

And for the liquid:

GL ¼ HL � TSL ð14:2Þ

At equilibrium, above TM

dGS

dT
¼ �SS ð14:3Þ

and below TM

dGL

dT
¼ �SL ð14:4Þ

so that the entropy of the material is also discontinuous at the melting point.
At the melting point, GS = GL, so that

HL �HS ¼ TMðSL � SSÞ ð14:5Þ

which can be written as:

�H ¼ TM�S ð14:6Þ

There is a discontinuity in the enthalpy at the melting point, as illustrated in Fig 14.2.
The enthalpy change is also known as the latent heat of transformation. It is the dif-

Figure 14.2 Enthalpy as a function

of temperature for a solid and liquid.
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ference between the heat content of the two phases as measured with a calorimeter.
The specific heat, which is the derivative of the enthalpy, is infinite at the melting
point.

The melting point is the temperature of equilibrium between a solid and a liquid
when both are present. The solid phase can exist above the melting point and the liquid
phase can exist below the melting point. The Lindeman theory of melting suggested
that melting occurs when the thermal vibrations of the atoms become large enough so
that the solid is no longer stable. The Lindeman theory of melting is wrong.

There is a temperature above which a crystal structure is unstable, and this has been
found in molecular dynamics (MD) simulations. In MD simulations it is possible to
change the thermal energy of a sample very rapidly, between two computer time steps,
for example, by stopping the simulation, doubling the velocities of all the atoms, and
then continuing the simulation. Changing the temperature that far, that fast, in the
real world is more difficult. In such computer simulations, where periodic boundary
conditions are often used so that the crystals have no surface, the crystalline phase can
be superheated to about 15 % to 20 % above the melting point before the crystal struc-
ture becomes unstable.

As discussed in Chapter 15, pure liquids can be supercooled to about 20 % below
their melting points, that is, to about 0.8TM, before small islands of solid form spon-
taneously in the liquid. These nuclei of solid then grow rapidly, transforming the li-
quid to crystal.

So the solid can be superheated about 20% above the melting point, and the liquid
can be supercooled about 20 % below the melting point. Nothing strange happens to
the structure of the crystal or the liquid when they are superheated or supercooled. The
properties of both continue uniformly through the melting point. The melting point is
the temperature where the two phases are in equilibrium with each other.

There are many reports of premelting phenomena in the literature. These are re-
ports that some property of a crystal changes as the melting point is approached. These
effects are usually associated with remelting due to the presence of second compo-
nents that segregated to surfaces or to grain boundaries during the solidification pro-
cess.

It is well known that it is easier to supercool a liquid than to superheat a solid. The
usual difficulty in superheating solids is the reason for the equilibrium temperature
between a solid and a liquid being called the melting point. There is an intrinsic asym-
metry between the initial formation of a solid in a liquid and the initial formation of a
liquid in a solid that accounts for this. It depends on the relative values of the surface
tensions of the solid and liquid. Only one of the relationships illustrated in Fig. 14.3
can be valid for a particular material.

Figure 14.3 Surface-tension

relationships at a solid/vapor

interface.
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If rLS + rLV < rVS, then the free energy of the interface between the solid and vapor
will be lowered if a layer of liquid forms. This will only happen near the melting point,
where the free energy of the liquid is close to that of the solid. On the other hand, if rLS

+ rLV > rVS, then the intermediate layer of liquid will not form.
Usually, the former relationship, illustrated on the left in Fig. 14.3 applies:

rLS þ rLV < rLS ð14:7Þ

If this relationship is valid, then a layer of liquid should form spontaneously at the
surface of a solid at the melting point, as illustrated in Fig. 14.3. Just below the melting
point this layer is at most a few atom layers thick. This layer of liquid can grow in
thickness above the melting point, without a nucleation barrier to the formation of
the liquid phase. This is observed in MD simulations of crystal surfaces.

This asymmetry in the surface tensions has implication for nucleation. Liquids can
be supercooled to their homogeneous nucleation temperature if they are clean and free
of foreign particles. Usually, the nuclei of the solid phase do not form preferentially at
the free surface, they form in the bulk of the liquid, which suggests that a layer of liquid
separates the nucleating crystal from the vapor.

So the nucleation process is asymmetric. Both configurations in Fig. 14.4 imply that
Eq. 14.7 is valid. Equation 14.7 is usually valid, so the liquid can be supercooled to the
homogeneous nucleation temperature without nuclei forming at the surface, and
melting occurs spontaneously at the surface of a crystal on heating.

Solids can be superheated by keeping the surface cool, and heating them internally
with a high-power, focused light source. This can be arranged so that the surface is
below the melting point, while the interior of the sample is above the melting point. In

Figure 14.4 a) Homogeneous nucleation of a

solid in a liquid. b) Spontaneous formation of a

layer of liquid on a solid.

Figure 14.5 Tyndall figures:

dendritic melting of ice.
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this case, melting cannot proceed in from the surface, and so if the liquid phase is to
form, it must nucleate internally in the solid. This usually occurs first at grain bound-
aries or other defects. An example of this is dendritic melting of ice crystals to produce
Tyndall figures as in Fig. 14.5.

By focusing sunlight into a block of ice with a magnifying glass, internal melting can
occur in the form of liquid dendrites growing inside the ice. The dendrites are planar
and lie in the basal plane of the ice crystal. The morphology is similar to that of ice
dendrites growing into supercooled water. The fact that Tyndall figures are dendritic in
form implies that the ice was superheated, and that growth is limited by the diffusion
of heat. Water is more dense than ice, so small vapor bubbles form in the liquid to take
care of the volume change. These appear as dark circles in Fig. 14.5. Glaciologists have
used Tyndall figures to determine the orientation of the ice crystals in glaciers by
focusing sunlight into the ice with a magnifying glass.

14.2

Second-Order Phase Changes

Unlike first-order phase changes, second-order phase changes are homogeneous in
space. There is a continuous change in structure as the critical point is approached
from below. The prototypical example of a second-order phase change is the ferromag-
netic transition, where the critical temperature is known as the Curie temperature.

At a very low temperature, (08 K), all the spins in a ferromagnet align. There are
magnetic domains in real magnetic materials so that the net magnetization can be
zero, but all the spins in any one domain are aligned. As the temperature is in-
creased, some of the spins become misaligned. In the simple model that is used
to describe this, it is assumed that there is a strong anisotropy to the alignment of
spins, so that the spins can only point either up or down. As the temperature in-
creases, more and more spins flip over. There is a critical point, above which all of
the spins are randomly up or down. This happens when the average thermal energy
of the atoms is comparable to the increase in energy when a spin flips.

The enthalpy or energy content of the material changes as more spins flip, because
the increased number of flipped spins represents a higher energy state. This is, of
course, compensated for by a corresponding increase in entropy due to the increased
randomness.

So the enthalpy increases continuously as the critical point is approached. Above the
critical temperature, there is no more energy to be gained or lost, on average, by flip-

Figure 14.6 Spin alignment in a ferromagnet.
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ping spins as shown in Fig. 14.7. The specific heat is the temperature derivative of
enthalpy, as is shown schematically in Fig. 14.8.

The hatched area is the extra energy associated with flipping the spins, since the
random configuration has a higher energy than the ordered state. There is a very large
change in the specific heat at the critical point. This corresponds to a discontinuity in
the second derivative of the free energy, which is why this is known formally as a
second-order phase transition.

But the primary distinguishing characteristic of a second-order phase change is that
it is homogeneous in space. The spins flip randomly throughout the bulk of the sam-
ple. The transformation does not take place due to the motion of an interface.

In a second-order phase transition, both the free energy and the temperature deri-
vative of the free energy are continuous at the critical point. If you try to draw this, as in
Fig. 14.9, you will find that the curves do not cross, unless there is also an inflection
point in the difference between the two curves, but that implies a third-order phase
transformation [1].

Some have argued that a second-order phase transformation cannot happen. But
there is only one branch of the curves above the critical point, as illustrated in
Fig. 14.10.

This is best illustrated by considering an alloy that has an order–disorder transition.
In an ordering alloy, if the atoms are mobile enough at the critical point, then the

transition from order to disorder will proceed in the vicinity of the critical point. How-

Figure 14.7 Enthalpy as a function of temperature

for a second-order phase change.

Figure 14.8 Specific heat as a function of

temperature for a second-order phase change.

14 Phase Equilibria170



ever, the disordered high-temperature phase can often be retained by rapid cooling
from above the critical point to a temperature where the atoms are no longer mo-
bile. The ordered phase cannot be maintained by rapid heating to a high tempera-
ture, because the mobility of the atoms increases with temperature. Both the ordered
and disordered phases can exist at low temperatures where there is not enough atomic
mobility to enable a change in order. But only the disordered phase exists, if there is
enough mobility, above the critical temperature. It is difficult reproduce this effect in a
ferromagnet, because the spins can flip rapidly even at fairly low temperatures.

Figure 14.9 If both the free energy and the

temperature derivative of the free energy are

continuous at the critical point, the free-energy

curves do not cross.

Figure 14.10 If both the free

energy and the temperature

derivative of the free energy.

Figure 14.11 Free energy as a function of

temperature for a second-order phase change.
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14.3

Critical Point between Liquid and Vapor

There is a critical point between liquid and vapor, as illustrate in the phase diagram,
Fig. 14.12

It is possible to go continuously from the liquid phase to the vapor phase by going
around the critical point. Going through the critical point, for example by cooling, is a
second-order phase transformation. Below the critical point there is an area on the
phase diagram that is bounded by the coexistence curve (the phase boundary). Within
this area, a sample will consist of two distinct phases that are regions of greater and
lesser density. As the critical point is approached from below, the densities and other
properties of the two regions become increasingly similar, so that at the critical point
they are indistinguishable. A transformation going directly through the critical point
can proceed homogeneously in space, and so is second order. Elsewhere, however,
there is a discontinuous density change when going from one phase to the other,
and so a transformation proceeds by one phase growing at the expense of the
other. Such a phase transformation is inhomogeneous in space, and so is first order.

People have looked for a critical point between a crystal and a liquid. At the limits of
temperature and pressure available experimentally, either the density difference or the
entropy difference between the two phases is diverging. Some theorists state that the
change in symmetry which is associated with the difference between the structure of a
crystal and a liquid implies that this phase change must be first order, since it is im-
possible to change the symmetry gradually.

Figure 14.12 Disorder in an alloy that orders at

low temperatures.
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Problems

1. Discuss the difference between a first-order and a second-order phase transforma-
tion.

2. Why is there confusion about the difference between second- and third-order
phase changes?
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Chapter 15

Nucleation

In the preceding chapter, the motion of an interface between two phases was dis-
cussed. This discussion assumed that both phases were present. In this chapter,
the initial formation of one phase in another is discussed. There is usually a barrier
to the formation of a new phase: the formation of a liquid in a gas, a solid in a gas,
bubbles in a liquid, crystals in a liquid, precipitates in a solid, domains of reverse
magnetization, etc. The formation of a new phase begins with a small nucleus, which
grows by atoms joining and leaving it, by the same processes discussed in detail in
chapter 20. In this chapter, the barrier to the formation of a new phase is discussed.
This barrier controls the rate of formation of the new phase.

In some instances, there is no barrier to the formation of a new phase, for example,
in systems with a critical point, it is possible to go continuously from one phase to
another. There is also a process known as phase separation where one phase sponta-
neously decomposes into two phases, which will be discussed in Chapter 23.

There is a barrier to the formation of new layers on the faces of some crystals, so that
the growth of the crystal involves a nucleation process. We will return to the kinetics of
crystal growth after discussing nucleation processes in general.

15.1

Homogeneous Nucleation

There are two classes of nucleation events, known as homogeneous and heterogeneous
nucleation. Homogeneous nucleation involves the spontaneous formation and subse-
quent growth of small particles of the new phase. In heterogeneous nucleation, the new
phase is initiated on a foreign material such as a particle or a surface layer. Homoge-
neous nucleation occurs when there are no heterogeneous nuclei present. A hetero-
geneous nucleating agent provides a lower barrier to the initial formation of the
new phase. Most nucleation processes in the real world are heterogeneous, but the
process depends on the nucleating agent involved, and so the details defy a generic
description. The homogeneous nucleation process involves only the one material,
and so it is intrinsic to the material. The conditions for homogeneous nucleation in
to occur represent a limit on the stability of the phase. It can be analyzed more readily
than heterogeneous nucleation that involves a foreign, often unknown, material.
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15.1.1

Volmer Analysis

Volmer [1] invented nucleation theory to explain the strange melting and freezing
behavior of materials. Most materials melt at their melting points. Theories of
phase-transformation kinetics were available, but some liquids could be undercooled
a lot, and others could be undercooled only little, or not at all. The behavior of various
materials was different, and even the behavior of one material was erratic and could
vary from one sample to another. Volmer addressed the question: Why can liquids be
undercooled?

Volmer started from the fact that small particles are less stable than the bulk phase
because of their surface tension, and so it is difficult to form a small particle. And this
creates a barrier to the formation of a new phase. He suggested that the formation of
small particles depends on fluctuations.

A supercooled liquid is metastable. It is stable in the absence of the solid phase, but it
is not the lowest free energy state. Volmer considered the question: What is the prob-
ability of a fluctuation that is big enough to make a stable bit of the new phase?

He assumed that the change in free energy when a cluster of atoms of the new phase
formed could be described by two contributions, one from the decreased free energy
associated with the formation of the new phase, and the other from the surface tension
of the small cluster. Assuming that the cluster of atoms of the new phase is a sphere of
radius r, the change in free energy when the cluster forms can be written in terms of
these two contributions:

�Gr ¼ ��GV

4

3
pr3 þ r4pr2 ð15:1Þ

Here DGV is the change in free energy per unit volume associated with the transfor-
mation, and r is the surface tension, or specific surface free energy. For a liquid that is
supercooled below its melting point, we can write �GV � L�T=TM, where DT is the
undercooling, and L is the latent heat, as in Eq. 20.7.

Figure 15.1 Free energy

versus temperature for a solid

and a liquid.
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Figure 15.2 is a plot of the total free energy of the cluster, DGr, for various sizes of
cluster. The total surface area of the cluster increases as r2, and the volume free-energy
term decreases as r3. The magnitude of the volume term depends on the undercooling.
For a finite undercooling, the volume free-energy term will dominate for large radius: a
large enough crystal will grow. Very small crystals can reduce their free energy by
shrinking. The transition between these two regions is at the maximum in the total
free-energy curve, which occurs at the critical radius, r*. The value of r*, which is the
radius corresponding to the maximum in the free energy, is given by:

�Gr

dt
¼ 0 ¼ �4pr2�GV þ 8prr ð15:2Þ

so that the critical radius is:

r� ¼ 2r

�GV

¼ 2rTM

L�T
ð15:3Þ

Volmer made use of the fact that the probability of finding a fluctuation of energy, W,
is given by a Boltzmann factor:

expð�W=kTÞ ð15:4Þ

The probability of finding a cluster of size r* should then be given Eq. 15.4 with W
given by the free energy required to from the cluster. The free energy to form a cluster
of size r* is obtained by substituting the value for r* from Eq 15.3 into Eq. 15.1:

�Gr� ¼
16

3

pr3

ð�GVÞ
2 ð15:5Þ

Figure 15.2 Free energy of

a cluster of atoms for various

radii of the cluster.
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and so the probability of finding a cluster of size r* among N atoms is:

Nr�

N
¼ exp ��Gr�

kT

� �
¼ exp � 16pr3

3kTð�GVÞ
2

 !
ð15:6Þ

In general, the total free energy of a critical cluster, DGr*, includes strain energy, mag-
netic energy, electrical energy, etc., in addition to the volume free-energy and surface
free-energy terms. If they are relevant, these contributions should be added to obtain
the total free energy of the critical cluster. The free energy in Eq. 15.6 was calculated for
a spherical cluster, but the energy in the exponent should always be simply the total
free energy to form the critical nucleus.

For homogeneous nucleation of a solid in an undercooled liquid, there are typically
about 300 atoms in a cluster of critical size. The total free energy to form a cluster is the
total change in free energy for all 300 atoms. So the number in the exponent can be
very large. For small undercooling, DGv is small, so the exponent is large and negative,
implying very few critical nuclei. For larger undercooling, the volume free energy
becomes comparable to the surface free energy. When this happens, the exponent
switches from being large to being small in a small temperature interval. The prob-
ability of finding a nucleus of critical size increases abruptly in a small temperature
interval, as illustrated in Fig. 15.3.

For undercooled metals, the mobility of the atoms in the liquid is large, so the dis-
tribution of solid-like clusters in the liquid can change rapidly. Nucleation occurs very
rapidly once the critical supercooling is reached. Supercritical clusters grow very ra-
pidly, and their growth rate will be limited by heat flow. The latent heat of a typical
metal is enough to raise its temperature by an amount that is about one third of its
melting point. For most materials, homogeneous nucleation occurs at a supercooling
of about 20 %, that is, at a temperature that is about 0.8 TM. The latent heat released by

Figure 15.3 Number of

critical nuclei as a function

of undercooling.
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freezing of a sample at 0.8 TM is more than enough to heat the sample to the melting
point. And so the nucleation process is terminated after a few nucleation events by the
rapid growth and the associated heating of the sample.

In a glass, the situation is quite different. The rate at which the cluster distributions
can change is slow, and the growth rate of critical nuclei is also slow. The growth rate is
so slow that heat flow is not an issue. So a nucleus can form at one place and the
supercooling is still maintained in another part of the glass sample. And so the nu-
cleation rate can be measured. Nucleation of a new solid phase in a solid is usually
similar to this. There is usually a difficulty in fitting the nucleation data to the expected
nucleation rate for glasses. But there are often defects in solids, and irregularities in
the structure of glasses. It is also difficult to measure surface tensions and to deter-
mine strain energy contributions in order to estimate the work required to form the
nucleus.

For precipitation of oxygen in silicon, the oxygen moves interstitially through the
lattice. The growth rate of the precipitate depends on the rate of motion of oxygen
through the lattice. The oxygen precipitates as crystoballite, a form of SiO2. An
SiO2 molecule occupies about the same volume as two silicon atoms in a silicon crys-
tal. There is a significant stress generated at the precipitate, and the energy in the stress
field is a major component of the total energy of the precipitate. Silicon atoms are
forced into an interstitial position, and the precipitate blows out dislocation loops
to relieve the stress. The stresses generated and the effects of the stress-relief mechan-
isms all contribute to the total work to form the precipitate.

Detailed experiments have been carried out studying the nucleation of liquid dro-
plets in clean vapor. The surface tension of the liquid can be measured readily, and the
clusters of liquid in the vapor phase are likely to be spherical. The experimental data on
these systems verify the validity of the nucleation equations.

Continuous nucleation of particles can occur in a stream of hot atoms or molecules
coming from a high-temperature source, or expanding and cooling in a jet coming
from a high-pressure source. There can be a steady-state nucleation process where
particles nucleate continuously at some distance down stream from the source [2].

15.1.2

Turnbull’s Droplet Experiment

Most liquids contain heterogeneous nucleating particles, and so it is difficult to ob-
serve homogeneous nucleation of crystals in liquids. Turnbull [3] reasoned that if he
subdivided the liquid into small enough droplets, that most of the droplets would not
contain a nucleating particle. In order for this experiment to work, nucleation should
occur in the bulk of the liquid, not at the surface or at the substrate on which the
droplet is sitting. Turnbull chose mercury for the experiment, which can be readily
purified by distillation. The results of the experiment are presented schematically
in Fig. 15.4.

For large droplets, the undercooling that could be achieved was small. Very small
droplets could be undercooled to about 0.8 TM. The transition occurred for a droplet
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diameter of about 60 lm. The volume of such a droplet is about 10�7 cm3, which sug-
gests that there were about 107 heterogeneous nuclei in a cubic centimeter of the
liquid. This is not too different from the number of micrometer-size particles in
the air we breathe if the air is reasonably clean.

This experiment has been repeated hundreds of times by many experimenters using
a variety of materials. The maximum undercooling is usually about 0.8TM. The free
energy of solid/liquid interfaces is difficult to measure, and so the interfacial free
energy of solid/liquid interfaces has been calculated for many materials from Eq.
15.6 using the observed critical undercooling. For example, for the experiments illu-
strated in Fig. 15.4, a droplet which is 60 lm in diameter contains about 3 � 1015

atoms. And so the probability of finding a critical nucleus is about 3 � 10�16. The
natural logarithm of 3 � 10�16 is –38, and so we have:

38 ¼ 16

3

pr3

kTðL�T�=TMÞ
2 ð15:7Þ

At the nucleating temperature kT � L�, where � is the atomic volume, and L� is the
latent heat per atom. Using DT*/TM � 0.2, we have approximately:

38 � 16

ð0:2Þ2
r3

L3�
ð15:8Þ

so that:

r

aL
� 1

2
ð15:9Þ

where a = �1/3. This is known as Turnbull’s Rule. The surface energy per atom is equal
to about one-half of the latent heat per atom. For all the materials that have been
measured, r/aL is between 1/2 and 1/3, with 1/2 being more common for metals,
and 1/3 being more common for organic compounds.

There are tables of solid–liquid surface tensions that have been determined by this
method [5]. The game is that if someone repeats an earlier experiment, and supercools

Figure 15.4 Observed undercooling

versus droplet size.
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the liquid to a lower temperature, he wins, because he can say that the earlier experi-
ments were obviously not as clean as his, and were subject to heterogeneous nuclea-
tion. And so a new, higher, value of the surface tension is obtained.

Using Turnbull’s rule, we can rewrite Eq. 15.3 for the critical radius:

r� ¼ 2r

�G�V
¼ 2rTM

L�T�
� a

TM

�T�
ð15:10Þ

or

a

r�
� �T�

TM

ð15:11Þ

And so we have a simple expression for an approximate value for the amount by which
surface curvature changes the melting point, which is known as the Gibbs–Thompson
effect. This approximate value is accurate to within about a factor of two for all the
materials that have been measured.

This equation says that there is a significant change in the melting point only if the
radius of curvature of the surface is very small. For example, for a droplet with a 1 lm
radius, a/r*� 3� 10�4. For a material with a melting point of 10008 K, the equilibrium
temperature would be lowered by 0.3 8C. For a sample 1 cm in radius, the effect of
surface curvature on the melting point is negligible.

15.1.3

Surface Free Energy

Surface free energy of a clean surface is primarily due to missing bonds at the surface.
There are also effects due to surface relaxation, surface stresses, surface reconstruc-
tion, etc., and these modify the energy associated with the missing bonds. But the basic
effect is due to the missing bonds. To illustrate this, we will look at a simple case, in two
dimensions. We will evaluate the total free energy of a group of atoms in order to
determine the free energy per atom in the group. This must be done on a closed
figure, since the contribution of the surface free energy to the total free energy de-
pends on the relationship between the surface area and the volume of the cluster.

The square clusters in Fig. 15.5 all have the same shape, and so there is a simple
analytical relationship between the length of their peripheries and their areas. The
table lists the number of atoms (squares) and the number of bonds in each clus-
ter. It is assumed that there is a bond between any two adjacent squares.

Figure 15.5 Square clusters in two dimensions.
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Number of atoms, n 1 4 9 16

Number of bonds, N 0 4 12 24

The number of bonds, N, in each cluster is given in terms of n, the number of atoms
in the cluster, by:

N ¼ 2n� 2
ffiffiffi
n
p

ð15:12Þ

The first term is proportional to the number of atoms in the cluster and the second
term is proportional to length of the periphery of the cluster. The total energy decrease
on forming the cluster from isolated atoms is the number of bonds times the energy
per bond, f:

Nu ¼ 2nu� 2
ffiffiffi
n
p

u ð15:13Þ

The total free energy to form each cluster can also be written in terms of the latent heat,
L, and the surface tension, r. The area of each cluster is na2, and the length of the
periphery of each cluster is 4a

ffiffiffi
n
p

, so the energy of formation of a cluster is:

�E ¼ a2nL� 4a
ffiffiffi
n
p

r ð15:14Þ

Comparing terms in Eqs. 15.13 and 15.14 gives the latent heat and the surface tension
in terms of the bond energy:

L ¼ 2u

a2
; r ¼ u

2a
ð15:15Þ

so that

r

aL
¼ 1

4
ð15:16Þ

If this is done in three dimensions, the result is:

r

aL
¼ 1

2
ð15:17Þ

which is Turnbull’s rule for the relationship between the surface tension per atom and
the latent heat per atom.

If we had not used squares for the geometry of all our clusters, as in Fig. 15.6, then
we would not have found a simple relationship between the number of atoms and the
number of bonds in the clusters.

The relationship between the number of atoms and the number of bonds also de-
pends on the lattice structure that is assumed for the clusters.

Figure 15.6 Small clusters in two dimensions.
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The geometry of the clusters averages out for large clusters, provided that they are
reasonably compact. Compact clusters have lowest total energy, and are the most likely
configuration. This suggests why it is reasonable to use the ratio of the surface area to
the volume of a sphere as an approximation to obtain the total energy of formation of
a cluster.

15.1.4

Becker–Döring Analysis

Becker and D€ooring [4] derived the equilibrium cluster distribution, Eq. 15.6, which
Volmer simply assumed. Their analysis provides insight into the nucleation pro-
cess, and into the kinetics of how the cluster distribution changes in time, as well
as providing an expression for the rate of nucleation. They assumed, as Volmer
did, that the clusters of atoms of the new phase are spheres. We will generalize
that by assuming that there is a fixed relationship between the number of atoms,
n, in a cluster, and its surface area, which is proportional to n2/3, so the energy to
form a cluster of n atoms can be written:

En ¼ �nLþ brn2=3 ð15:18Þ

where b is a geometrical constant. For a sphere:

b ¼ ð3�Þ2=3ð4pÞ1=3 ð15:19Þ

where � is the atomic volume.
The amount by which the energy of a cluster of n–1 atoms changes when an atom is

removed is:

�En ¼ En � En�1

¼ �nLþ brn2=3
� �

� �ðn� 1ÞLþ brðn� 1Þ2=3
� �

� �Lþ 2

3
n�1=3br ¼ dEn

dn
ð15:20Þ

From Eq. 15.18, the energy per atom in a cluster of n atoms is:

En

n
¼ �Lþ brn�1=3 ð15:21Þ

The energy per atom in a small cluster is higher than the energy per atom in the bulk of
the nucleating phase, and increases as the number of atoms in the cluster decreases.
This is illustrated in Fig. 15.7.

Assuming that the rate at which an atom joins a crystal is given by Eq. 13.29, the rate
at which atoms join a cluster containing n atoms can be written:

Rþn ¼ Rþ0 An exp � Q

kT

� �
ð15:22Þ

15.1 Homogeneous Nucleation 183183



Q may be the same as the activation energy for diffusion, as in Eq. 20.25, or it may be
zero, as in Eq. 20.27.

Here An is the capture cross section (surface area) of the cluster. The rate at which
atoms leave the cluster depends on the same activation energy, plus the amount by
which the total energy of the cluster changes when the atom leaves, which can be
written:

R�n ¼ R�0 An exp �ðQ��EnÞ
kT

� �
ð15:23Þ

Note that DEn is defined as a negative quantity in Eq. 15.20, so that Qn–DEn in this
equation is actually the sum of the two terms. This relationship is similar to the energy
per atom in a cluster, which is given by Eq. 15.21, and illustrated in Fig. 15.7. However,
in Eq. 15.23 we want the change in total energy of the cluster when an atom leaves it,
which is given by Eq. 15.20.

The relationship between the R0 terms is established by the equilibrium condition
for the bulk phases, as in Eq. 20.20:

Rþ0 ¼ R�0 exp � L

kTe

� �
ð15:24Þ

so that Eq 15.22 can be written:

Rþn ¼ R�0 An exp � L

kTe

� Q

kT

� �
ð15:25Þ

Combining Eqs. 15.25 and 15.23

Rþn
R�n
¼ exp � L

kTe

��En

kT

� �
ð15:26Þ

¼ exp
L�T

kTeT
� 2

3

br

kT
n�1=3

� �

Figure 15.7 Energy per atom for

clusters containing n atoms.
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Becker and D€ooring assumed that most of the atoms are not in clusters, but are present
as single atoms. They assumed that there are not very many clusters, so that the clus-
ters do not interact or coalesce. They assumed that the clusters grow or shrink only by
the addition or subtraction of single atoms, as in Fig. 15.8.

With these assumptions, a cluster of size n is created only by adding an atom to a
cluster of size n–1 or by an atom leaving a cluster of size n+1. A cluster of size n is
destroyed if it either gains or loses an atom. So the rate of change of Nn, the number of
clusters of size n is:

dNn

dt
¼ Nn�1Rþn�1 þ Nnþ1R�nþ1 � NnRþn � NnR�n ð15:27Þ

There is an equation like this for each cluster size, and these equations are all coupled.
In general, they are not solvable. If dimers are permitted to join or leave the clusters,
the equations become even more difficult to solve. To compare with Volmer’s equa-
tion, we will look for the equilibrium distribution, which requires not only that dNn/dt
= 0, but also that there is no net flow from n-1 to n to n+1 clusters, which requires:

Nn�1Rþn�1 ¼ NnR�n ð15:28Þ

or

Nn

Nn�1

¼ Rþn�1

Rn

ð15:29Þ

for each value of n.
We can write:

Nn

NI

¼ Nn

Nn�1

� Nn�1

Nn�2

� Nn�2

Nn�3

� � �N2

N1

¼ Rþn�1

R�n
� R
þ
n�2

R�n�1

� � �R
þ
2

R�3
� R
þ
1

R�2
ð15:30Þ

¼ Rþ1
R�n
�
Yn�1

i¼2

Rþ1
R�i

Using Eq. 15.26, this becomes:

Nn

N1

¼ Rþ1
R�n
�
Yn�1

i¼2

exp
L�T

kTeT
� 2

3

br

kT
i�1=3

� �
ð15:31Þ

¼ Rþ1
R�n

exp ðn� 2Þ L�T

kTeT
� 2

3

br

kT

Xn�1

i�2

i�1=3

" #

Figure 15.8 Equilibrium cluster distribution.
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Replacing the sum with an integral, and for large n, we have approximately:

Nn

N
� exp

nL�T

kTeT
� brn2=3

kT

� �
¼ exp ��Gn

kT

� �
ð15:32Þ

as Volmer assumed.
Figure 15.9a is a plot of the free energy, DGn, as in Fig. 15.2, but with the abscissa n,

the number atoms in the cluster, rather than the cluster radius, r. In this plot, the
volume free energy is linear in the number of atoms in the cluster, and the surface
term increases as n2/3. The maxima in the total free-energy curves are at the critical
cluster size.

Figure 15.9 a) Free energy to form a cluster containing n atoms, sketched for

three different undercoolings. b) The number of clusters containing n atoms,

sketched for three undercoolings.

a)

b)
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Figure 15.9b is the corresponding plot of the logarithm of the number of clusters of
size Nn as given by Eq. 15.32, plotted against cluster size, n. It is a mirrored version of
Fig. 15.9a. The minima in the cluster distributions correspond to the maxima in the
free energy.

If the vertical axis on this plot were linear in Nn, then the hatched area under each
curve would be the total number of atoms in the sample. The horizontal lines at the
bottom of the hatched areas are drawn where Nn = 1, which corresponds to the largest
cluster that is likely to be present among the N atoms in the sample. As the under-
cooling is increased, the size of the largest cluster that is likely to be present increases.
But the size of the largest cluster does not increase as much as the size of the critical
cluster decreases. The size of the critical cluster decreases from infinity at the melting
point to a few hundred atoms about 80 % of the melting point. Nucleation takes place
when the critical cluster size becomes small enough so that one is likely to sponta-
neously exist in the liquid.

15.1.5

Nucleation Rate

Since a nucleus of critical size is equally likely to grow or shrink, a simple expression
for the rate of nucleation, I, is obtained by multiplying the number of critical nuclei by
half the rate at which atoms join a critical nucleus:

I ¼ 1

2
Rþn�Nn� ð15:33Þ

The temperature dependence of the nucleation rate is dominated the density of critical
nuclei, and so it is similar to the curve in Fig 15.3.

There are more complicated versions than this to estimate the net rate at which the
critical-size clusters grow, notably one by Zeldovich, which is expressed as a correction
to the above equation. However, the importance of this and other corrections to the
simple expression above for the nucleation rate are overwhelmed by the sensitivity of
the nucleation rate to the value of the surface tension. The logarithm of the nucleation
rate depends on the surface tension cubed. For example, in an experiment where one
critical nucleus in 1022 atoms was observed, the surface tension can be calculated from:

ln 10�22 ¼ �50 ¼ 16pr3

3ðL�T=TMÞ
2kT

ð15:34Þ

But, if instead, only one critical nucleus in 1016 atoms was observed, the calculated
surface tension would be 10 % smaller. Turning this around, if the surface tension
is known to an accuracy of + 10 %, then there is an uncertainty of six orders of mag-
nitude in the nucleation rate. So if the Zeldovich factor changes the nucleation rate by a
factor of 10, and it is left out of the calculation, that corresponds to a change in the
surface tension of about 3 %. That is within the typical experimental error for direct
measurements of the surface tension. However, in principle the correction should be
included.
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15.1.6

Limitations of the Becker–Döring Analysis

There is a statistical probability for the formation of each of the clusters in Fig. 15.8. In
reality, any possible shape of cluster can form, with some of the shapes being a lot
more probable than others. The probability of a cluster being present at equilibrium
depends on the free energy to form it in the matrix. There are a variety of configura-
tions and corresponding free energies for various clusters containing n atoms. The
average free energy to form a cluster of size n at equilibrium is a statistical average
over all these clusters: (the free energy of the clusters of each possible shape)�(the
probability of occurrence of each). Assuming that all the clusters are spheres is clearly
a gross over-simplification. Attempting to improve the expression for the nucleation
rate by refining the expression for the free energy to form a spherical cluster is silly.

The coupled equations above for the rate of change of the number of clusters of size
n can be used in principle to assess how quickly the cluster distribution can respond,
for example, to a change in temperature. But the kinetics of the nucleation process
depends on the size and shape of the clusters that are present and on the details
of how atoms can join and leave each of those clusters, and on the reaction paths
linking the various clusters. There are many reaction paths joining clusters of various
configurations. Many of these are relatively equivalent, and some are unimportant. So
it is possible to think of an effective reaction path, and to approximate the response of
the cluster distribution to a change in temperature by assuming that the most probable
reaction path is the one described by a sequence of spheres of increasing size. This is
the spirit in which the Becker–D€ooring analysis should be viewed.

For nucleation of a solid in a liquid, the clusters involved in the nucleation process
are relatively small, and the mobility of the atoms in the liquid is relatively large, so it is
reasonable to assume that the cluster distribution reaches equilibrium very quickly. In
a glass, however, the rate at which the atoms can rearrange is slow, so that there can be
a large time lag for the distribution to change to the equilibrium distribution, and also
a time lag associated with clusters that have become super-critical growing to a size
where they can be observed. The same is true for many solid-state transformations.
Liquid droplet formation in a gas will depend on the density of the gas and how rapidly
the appropriate atoms or molecules can diffuse.

It is surprising that the simple nucleation theory of Volmer, and the derivation of the
cluster distribution provided by Becker and D€ooring work so well.

15.1.7

Assumptions in the Classical Nucleation Theory

The classical nucleation theory that is outlined above assumes that the critical nucleus is
a sphere, but this is not a major deficiency, since the important factor is how the total free
energy to form an average critical nucleus depends on its size, whatever its shape. The
analysis leaves out contributions due to other sources, such as stress, to the total free
energy of the cluster. These can also be added more or less readily if they are relevant.
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The analysis is not applicable if the cluster distribution is not at equilibrium, for
example if the temperature has changed too rapidly. The rate equations for non-equi-
librium conditions are a large set of coupled differential equations, which are difficult
to solve.

The Becker–D€ooring analysis assumes that most of the atoms are present as single
atoms, so that the clusters grow and shrink only by the addition or removal of single
atoms. In general, an analytical description of the nucleation process cannot be devel-
oped without this assumption, although there are various approximations.

The Volmer–Weber model assumed that the clusters were isolated spheres, but the
expression they wrote down for the probability of finding a cluster of critical size is
valid for any shape of cluster. It is also valid even if clusters interact and coalesce, but it
is more difficult to define what is meant by a critical cluster in that case.

Formation of a new phase near a critical point violates the assumption that the
clusters are separate, and do not interact or merge. The assumption is also violated
in most processes of vapor deposition. It is also often violated for the nucleation of new
layers during crystal growth. The cluster distributions in these cases are impossible to
obtain analytically, but can be found readily using Monte Carlo computer simulations.
This will be discussed in more detail below.

15.1.8

Nucleation of a Precipitate Particle

Nucleation of a precipitate particle can be described by the same equations that
were derived above, by inserting the appropriate value for the free energy to form
a nucleus. When the composition of the precipitate is different from the concentration
of the matrix, then the chemical potential change required to form the nuclei can
be expressed either as a supersaturation or as a supercooling, as illustrated in
Fig. 15.10.

Figure 15.10 The instability of the liquid phase

can be described as either a supersaturation or a

supercooling.
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If the concentration of the solvent component in the precipitate is small, the
chemical potential change to form a cluster of atoms of the precipitating phase
depends primarily on the properties of the precipitating component, and can be
written as:

ln ¼
Xn

i¼1

�li ¼ �n�lþ brn2=3 ð15:35Þ

where:

�l ¼ �l0 þ kT ln
CP

Cm

� �
ð15:36Þ

Cm is the composition of the matrix and CP is the concentration in the precipitate.
The nucleation rate can be written as:

I ¼ An�R
þ
0 expð�Q=kTÞ exp n��l� brn�2=3

� �
=kT

h i
ð15:37Þ

For a precipitate where there is a significant concentration of both the solvent and the
precipitating component in the precipitate, the contributions of both species to the
free-energy difference between the precipitate and the matrix must be included.
Dl can be expressed either in terms of the supersaturation, or in terms of the under-

cooling.
For a precipitate nucleating in a vapor, the composition can be replaced by the partial

pressure of the nucleating component. For nucleation of vacancies in a crystal, the
concentration is the vacancy concentration. And so on.

Using this simple form of the nucleation theory assumes that the concentration of
the precipitating component is given by the average composition or partial pressure.
But there is often a depletion of the precipitating species around the nucleus. The
clusters are formed by a local fluctuation in concentration, and it is reasonable to
suppose that many of the atoms that were in some volume around the precipitate
came together to make the nucleus. This would mean that the composition in the
matrix around the nucleus is depleted. For nucleation in a vapor phase, the local de-
pletion of atoms can result in a pressure-release wave going out from the nucleus at the
speed of sound. How much the matrix is depleted, and how this depletion will influ-
ence the growth of the nucleus depends on the time it takes to form a nucleus, com-
pared to how rapidly the species can move around to change the environment in the
vicinity of the nucleus.

15.2

Heterogeneous Nucleation

Most nucleation processes are not homogeneous. Nucleation occurs on particles, or at
surfaces, or wherever. Turnbull’s droplet experiment suggests that there are 107 or so
nucleating particles in a cubic centimeter of material. Water can be supercooled to
– 40oC by triple distillation using carefully cleaned containers, and by being careful
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not to expose the water to air at any time during or after the distillation process. Or-
dinary tap water can be supercooled to –5 8C.

15.2.1

Heterogeneous Nucleation Theory

The standard theory for heterogeneous nucleation assumes that clusters of the new
phase form as droplets on a foreign substrate. The shape of a droplet on the substrate
depends on the contact angle, h, which is also known as the wetting angle. h depends
on the balance of surface tension forces at the edge of the droplet. h will likely be small
if the surface tension between the droplet and the substrate is small. For complete
wetting, h = 0. When h is small, as illustrated in Fig. 15.11, the radius of curvature
of the surface of the droplet is much larger that the radius of a sphere that contains
the same number of atoms, and so this configuration will nucleate the second phase at
a much smaller undercooling.

The illustration shows a liquid droplet on a solid surface in a vapor, but it could
equally well be a solid droplet on a substrate in a liquid.

The critical condition for the growth of a cluster depends on the radius of its surface.
The volume free-energy term in the expression for the free energy of the cluster

depends on the number of atoms in the cluster. The surface free energy depends
on the area of the vapor/substrate interface that was replaced with the liquid/substrate
interface, plus the contribution from the liquid interface, which depends on the con-
tact angle.

Heterogeneous nucleation is often observed at very small undercoolings, implying
that the contact angle is small, or even that the substrate is completely wetted.

Heterogeneous nucleation usually takes place on small particles. For example, if the
foreign particle is one micrometer in radius, and if the surface is completely wetted
with a monolayer of the nucleating phase, then from Turnbull’s Rule, Eq. 15.11, the
critical undercooling for nucleation would be 10�4 TM, which is about 0.3 8C for TM

Figure 15.11 Heterogeneous nucleus.
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about 1000 K. This is the way most heterogeneous nucleating agents work. The nu-
cleating phase adsorbs on a heterogeneous particle to form the nucleus. A plane sub-
strate is a poor approximation for a small particle.

The heterogeneous nucleation theory provides an extra parameter, h, to fit experi-
mental data. For any observed nucleation temperature, the contact angle, h can be
calculated. This process often results in silly numbers for r* and h. This is quite dif-
ferent from measuring the contact angle directly. This can be done readily for liquid on
a flat substrate with air or a vapor above, but it is a very difficult measurement to make
for a crystal on a substrate surrounded by its melt.

There has been a lot of work done by surface scientists examining the interactions
between deposits and surfaces. Some of this work will be discussed later in the context
of vapor deposition. Surface scientists distinguish between physical and chemical ad-
sorption onto surfaces. In physical adsorption the atoms or molecules are bound to the
surface, but they can readily desorb. In chemical adsorption the adsorbed atoms or
molecules react chemically with the surface, and so the surface chemistry is quite
different from that of the adsorbing species or the substrate. If a droplet on a sur-
face, as illustrated in Fig. 15.11, is of a species that reacts with the surface atoms,
then the surface between the droplet and the substrate will be covered with a layer
that is the product of this reaction. As the droplet spreads across the surface, a che-
mical reaction occurs, forming the product layer. The energy associated with this re-
action contributes to the free-energy change associated with the spreading of the layer.
This situation is not described by simple equations involving surface tensions.

In general, heterogeneous nucleation depends on the specific nature of the materi-
als involved. There is no generally applicable description of this process.

15.2.2

Nucleation Lore

Ordinary tap water, or even water from a puddle in the street, can be readily super-
cooled to –5 8C. It can be maintained at that temperature for a long period of time. Ice
will nucleate at about –6 8C. Very careful experiments have been performed to study
the homogeneous nucleation of ice in water. By triple distillation from one still into the
next, without exposure to air, water can be supercooled to about –40 8C, and main-
tained there for long periods of time (years). Exposing the purified liquid to air im-
mediately returns it to a condition where it can only be supercooled to –6 8C. There is
evidently a relatively powerful nucleant for ice that is common in the air.

It is commonly thought that supercooled liquids, such as a beaker of water at –5 8C,
are very susceptible to vibration, but this is not so. This misconception is the result of
sloppy experiments.

An experiment to measure the undercooling is often performed as illustrated in
Fig. 15.12. But the wall of the inner container above the liquid cools much more ra-
pidly than the liquid. A little jiggling will move some water into contact with the cold
wall. And so the nucleation process is very sensitive to vibration, but the thermometer
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is not measuring the temperature where nucleation occurs. Keeping the level of the
liquid above the level of the cooling liquid eliminates both problems.

There is an apocryphal story told about Joel Hildebrand, an outstanding physical
chemist, who went to Berkeley from the University of Chicago. He wanted to study
the crystallization of glycerin. But try as he might, he could not get the glycerin to
crystallize at Berkeley. It always supercooled into the glassy state. He hammered
on it, shot bullets at it, but nothing worked. Finally, he contacted his former colleagues
at in Chicago, and asked them to send him some crystalline glycerin. They did,
and after it arrived, it is said that they could no longer supercool liquid glycerin at
Berkeley.

It was supposedly common practice for chemists in the good old days to comb their
hair over their supersaturated solutions in order to induce precipitation.

It is well known that scratching the bottom of the beaker, which is filled with a
supersaturated solution or a supercooled liquid, with a glass rod, will cause nuclea-
tion. This can be readily observed using Salol, which is a favorite material for demon-
strations of crystal growth. It melts at 41.6 8C, and the liquid can be undercooled read-
ily to room temperature. It can also be easily quenched to a glassy state. It has a max-
imum crystallization rate of 3.6 mm min�1 at about room temperature (see Fig. 20.8).

The crystalline phase can be nucleated by scratching the bottom of the glass contain-
er with the broken end of a glass rod. This does not work if the end of the rod has been
flame polished. The nucleation is not a result of the creation of fresh glass surface by
the scratching, since breaking a glass rod in the supercooled liquid does not nucleate
crystals. It is probable that the scratching induces cavitation in the liquid, which results
in nucleation.

15.2.3

Cavitation

Cavitation occurs when there is a negative pressure in the liquid. This can be induced
by an ultrasonic sound generator, such as an ultrasonic cleaning bath, which produces

Figure 15.12 Experiment for measuring the super-

cooling of a liquid.

15.2 Heterogeneous Nucleation 193193



standing waves in the liquid. Small cavities open up in the liquid in the regions of
negative pressure, and collapse again when the pressure becomes positive. A relatively
small negative pressure will create cavities, but a very high local pressure is generated
when a cavity collapses. The pressure at the center of the collapse is increased by R/a,
where R is the maximum diameter of the cavity, usually on the order of micrometers,
and a is the smallest radius of the cavity when it collapses. If there is a gas component
in the liquid, such as CO2 in water, then this evaporates into the cavity and limits the
collapsed diameter, a. If there are no gaseous components in the liquid, then a is of
atomic dimensions, and the collapse pressure can be very high. After the collapse,
which is accompanied by a compressive stress, there is a rebound, in which is accom-
panied by tensile stresses of a similar magnitude. The collapse pressure can be so high
that light is emitted, an effect known as sono-luminescence. There is a sound, like a
hiss, associated with the collapse of cavities in an ultrasonic field.

A standard test to see whether a liquid is cavitating is to dip a piece of aluminum foil
into the liquid. Cavitation will make holes in it. Ultrasonic cleaners are used to clean
jewelry, semiconductor wafers, etc. The propellers on ships are carefully designed to
eliminate cavitation, which will tear the propeller apart, over time.

Cavitation will induce nucleation in an undercooled liquid. For example, ice will
nucleate in a beaker containing water that has been supercooled to –4 8C or so
when the beaker is put into an ultrasonic cleaning bath so that cavitation occurs in
the supercooled liquid. Nucleation can also be induced in undercooled water by ra-
pidly separating two flat surfaces. This is believed to occur by generating a negative
pressure that makes a cavity, which nucleates ice when the cavity collapses. Ice ex-
pands on freezing, and so a compressive stress should not nucleate ordinary ice.
But there are more dense phases of ice that occur at high pressures. Or, the nucleation
could take place during the negative pressure release wave that follows the collapse of
the cavity. It is not known which of these effects results in nucleation of ice.

This effect can be demonstrated dramatically with a sealed U-tube that is partially
filled with de-gassed water. The water can be de-gassed by extensive boiling in a reflux
condenser, which prohibits the access of air to the water. The water in the U-tube can
be undercooled a few degrees by immersing it in a cooled bath. When the tube contain-
ing supercooled water is tipped so that the water runs into the end of the tube and
collapses the vapor column, then ice will nucleate in the water. The pressure spike
from the collapse of the column results in nucleation of ice.

15.2.4

Re-entrant Cavities

It is often found that the temperature to which a liquid can be supercooled depends
on how high it was superheated before it was cooled. It is rather difficult to believe
that a slowly cooled bulk liquid retains a memory of how high it was heated. This effect
has been explained by postulating the presence of small volumes of the crystal that
are retained in cavities in the wall of the container. When the proper relationship
exists between the relevant surface tensions, a small crystal can exist in a microscopic
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cavity to a temperature far above the melting point. The surface tension can stabilize
the crystal against melting, as illustrated in Fig. 15.13.

When the liquid supercooled, the crystal grows out into the bulk. Usually heating the
liquid far enough above the melting point will eliminate this effect.

15.2.5

Cloud Seeding

Cloud seeding to induce rainfall on parched fields is not as popular as it once was. It
was sometimes done with carbon particles, which were said to work by radiative cool-
ing. The commonest method made use of silver iodide smoke as a nucleating agent.
The silver iodide smoke was generated in an airplane over the area where the farmers
wanted rain. The idea was that the silver iodide would nucleate ice crystals which
would then result in rain. Small particles of silver iodide will nucleate ice only below
–10 8C. There is no hope of nucleating ice under very dry atmospheric conditions. And
so the cloud seeders would wait until there was a likely day, one on which there was
some probability of rain, and then do their thing to make it rain locally. If it rained, they
would take the credit. But tests of this method were performed by choosing a likely day
to do cloud seeding, and then randomly seeding or not seeding. On average, the rain-
fall turned out to be independent of the cloud seeding. Recently claims have been
made that the tests were not all that conclusive.

15.2.6

Industrial Crystallization

Many bulk chemicals are produced in crystalline form. Not only sugar and salt, but
fertilizers, swimming pool chemicals, and so on, are produced by a crystallization
process. The crystallization of sugar and salt is carefully controlled to produce the
desired size of crystal. This is usually done in a continuous process, where the crystals
are harvested continuously, and more nutrient is added to the solution to keep it super-
saturated. The individual crystals continue to nucleate and grow. It seems unlikely that
there is a large enough supply of heterogeneous nuclei around to keep the process
going, especially when the crystallization is carried out in a closed chamber. Where

Figure 15.13 Solid retained in a re-entrant cavity.
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do these nuclei come from? Some of the new crystals may form by fracture of existing
crystals when they bump into each other or into the walls of the container. The fracture
of a brittle material does not produce a simple fracture surface. For example, breaking
a piece of blackboard chalk produces a shower of fine particles. Similarly, when a thin
rod of ice is immersed in supercooled water and then broken, a shower of small ice
crystals goes out into the liquid from the fracture. The ice crystals are initially very
small, and if the liquid is not supercooled, they will melt and not be detected. But
in supercooled water, they grow rapidly and became observable crystallites. This could
be happening in industrial crystallization.

It is also well known that adding a crystal to a supercooled melt or solution to nu-
cleate it often results in not one, but rather many growing crystals. This suggests that
many small crystals are adhering to the surface of the crystal used as a seed. Often the
multiple crystallization can be eliminated by washing the seed crystal first.

Salol crystals growing in a glass dish into supercooled liquid are usually observed to
fracture when they reach a size of several millimeters. When the fracture occurs, many
other small crystals are soon observed nearby.

Experiments have been carried out to attempt to identify the source of the nuclei in
industrial crystallizers, and some of them quite clearly suggest that it is magic.

15.2.7

Grain Refiners

In metal castings, controlling the grain size of a casting is often desirable. Grain re-
finers are used to make castings with smaller grains. It should be simple to design a
grain refiner. Just choose a material with a higher melting point that is wet by the
crystal, and add it to the melt. But unfortunately, materials that wet each other are
also usually mutually soluble. And a material will not work as a grain refiner if it
dissolves in the liquid.

The grain refiner must not dissolve in the liquid. And so grain refiners are usually
some insoluble material that forms a compound or a surface layer in the melt that acts
as the nucleus. There seem to be no simple rules to identify a good grain refiner.

In alloy castings new grains can form by partial remelting of dendrites, a process that
is discussed in Chapter 28.

15.2.8

Residues

When a droplet of water dries, it leaves behind a residue of material that was soluble in
the water. This residue is likely to be hygroscopic. So, for example, when you wipe the
mirror in your bathroom in the morning to clear off the water droplets so you can see
your image, the pattern of wiping can often be seen in the water droplets that form on
the mirror the next morning.

If there have been water droplets on a surface, and they have dried, then water dro-
plets will form again on that surface much more readily than on a pristine surface.
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A related process provides a sophisticated method for secret writing. A solution is
made containing a low concentration of an appropriate chemical. When a droplet of
the solution dries on a suitable substrate, it leaves behind a sub-microscopic residue.
This residue can act as a nucleating agent. For example, large and clearly visible pre-
cipitates of a dye such as indigo can be grown by immersing such a substrate in an
appropriate supersaturated solution. Unfortunately, this method can be compromised.
Some of the residue can be transferred onto a piece of glass without destroying the
pattern on the original, and then the pattern on the glass can be developed by immer-
sing it in a supersaturated solution to reveal the pattern. So the receivers of the mes-
sage are unaware that it has been intercepted.

15.3

Johnson–Mehl–Avrami Equation

For many solid-state transformations, including glass crystallization, the rate of trans-
formation is sufficiently slow that it can be followed in time. The progress of these
transformations can be described by the Johnson–Mehl–Avrami equations.

15.3.1

Johnson–Mehl Equation

For many transformations, when the volume transformed is plotted as a function of
time, a plot such as shown in Fig. 15.14 is obtained.

The volume transformed can be measured as the latent heat released using a calori-
meter, or using differential thermal analysis (DTA). It can be measured as a change in
volume with a dilatometer; or the formation of the new phase can be followed with X-
rays. The process involves the nucleation of the new phase, followed by the growth of
the new phase. The growth proceeds until the whole sample has transformed. The
nucleation and growth process must be sufficiently slow that their progress can be
monitored in time.

Figure 15.14 Time dependence of the volume transformed.
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The Johnson–Mehl [6] equation describes the shape of the curve in Fig. 15.14 for
the case where the nucleation rate is constant in time, and the radial growth rate of
the transformed particles is constant.

To derive the Johnson–Mehl equation we define Xe as the fraction of the volume that
has transformed after a time t.

dXe is then the volume fraction which has transformed after time t due to particles
that nucleated between times s and s + ds.

dXe = (number of particles that nucleated between s and s + ds) x (volume, at time t,
of a particle that nucleated between s and s + ds)

Assuming that the nucleation rate, I, is constant in time, and that the radius of
a particle increases linearly with time at a constant velocity v, so that its radius is
R = (t – s) v,

dXe ¼
4

3
p vðt� sÞ½ �3Ids ð15:38Þ

so that:

Xe ¼
4

3
pv3I

Z t

0

ðt� sÞ3ds ð15:39Þ

Now,

Z t

0

ðt� sÞ3ds ¼ � 1

4
ðt� sÞ4

��t
0
¼ 1

4
t4 ð15:40Þ

resulting in:

Xe ¼
p

3
v3It4 ð15:41Þ

In this formulation, the volume fraction transformed becomes infinite with time. The
growth of the new phase can only proceed into the untransformed volume. In order to

Figure 15.15 The transformation proceeds

by nucleation, followed by growth of the nuclei.
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normalize the volume transformed, we can write the transformation rate as the pro-
duct of the untransformed volume fraction times the transformation rate:

dX ¼ ð1� XÞdXe ð15:42Þ

So that:

X ¼ 1� expð�XeÞ ð15:43Þ

Inserting the value of Xe from Eq. 15.41 gives the volume fraction transformed as a
function of time:

X ¼ 1� exp �p

3
v3It4

� �
ð15:44Þ

The volume fraction transformed increases as t4 for short times and saturates at X = 1
at long times, as illustrated schematically in Fig. 15.14.

15.3.2

Johnson–Mehl–Avrami

Avrami [7] modified the Johnson–Mehl formulation for the case where there are in-
itially a fixed number, N0, of nucleation sites per unit volume. These are used up as
time proceeds, so that the nucleation rate decreases with time:

N ¼ N0 expð�ttÞ ð15:45Þ

where t is a time constant. The nucleation rate, I, is:

I ¼ � dN

dt
¼ N0t expð�ttÞ ¼ Nt ð15:46Þ

Putting the nucleation rate at time s into the expression for the rate of transformation:

�dð1� XÞ ¼ 4

3
pv3

Z t

0

IðsÞðt� sÞ3ds ð15:47Þ

This can be integrated by parts to give:

X ¼ 1� exp � 8pN0v3

t3
expð�ttÞ � 1þ tt� t2t2

2
þ t3t3

6

	 
� �
ð15:48Þ

For small t, the number of nucleation events is given approximately by:

N � N0ð1� ttÞ ð15:49Þ

so the nucleation rate is:

I ¼ � dN

dt
¼ N0t ð15:50Þ
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which is constant as was assumed by Johnson and Mehl. For small t, the exponential
in Eq. 15.48 can be expanded as:

expð�ttÞ ¼ 1� ttþ t2t2

2
� t3t3

6
þ t4t4

24
� � � � ð15:51Þ

The first four terms in this expansion cancel out other terms in Eq. 15.48, so the first
remaining term in the brackets is in t4:

X ¼ 1� exp � 8pN0v3

t3

t4t4

24

� �� �
ð15:52Þ

¼ 1� exp �p

3
Iv3t4

� �

which is the Johnson–Mehl result, Eq. 15.44.
For large t, the number of nucleation sites decreases rapidly, so the t3 term in the

brackets dominates:

X ¼ 1� exp � 4

3
pN0t

3t3

� �
ð15:53Þ

And for intermediate values of t, the exponent will be between 3 and 4.
In general, an expression of the form:

X ¼ 1� exp½�ðktÞn� ð15:54Þ

can be fitted to experimental data. n is known as the Avrami exponent. The time con-
stant k depends on both the nucleation rate and the growth rate.

Analyses have been carried out for polymorphic phase changes that take place with
various nucleation rates, geometries and growth rates. The corresponding Avrami
exponents are presented in the table.

Avrami exponent
Constant nucleation rate 4
Decreasing nucleation rate 3–4
Nucleation on grain boundaries 1
Nucleation on dislocations 2/3
Constant nucleation rate with diffusion-controlled growth 2.5

Some researchers have obtained an Avrami exponent by fitting their data, and then
used the value to identify how nucleation occurred in their samples. Better informa-
tion about where and how nucleation occurred can be obtained by examining the
sample under a microscope.
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Problems

1. Using r = La/2, L� = kTM, n = (r/a)3, and the atomic volume, � = (4/3)pa3

a) Plot log (Nn/N) vs. n for DT/TM = 0, 0.1, 0.2, 0.3.
b) For N = 1022 atoms, plot the size of cluster, n, for which Nn = 1 as a function

of DT/TM. Plot the critical nucleus size, n*, on the same plot.
c) Plot the nucleation rate: I/v+ = exp(–DFn*/kT) versus the undercooling, DT/TM,

in the temperature range where I/v+ is about 10�23, that is where one nucleus
forms in a cubic centimeter of material. v+ is the rate at which atoms join the
critical nucleus.

2. A material (which is a lot like lead) melts at 327 8C. Its latent heat of fusion is
6 cal g�1, its density is 10 g cm�3, its molecular weight is 200, and its atomic dia-
meter is 3 A. What is the entropy of melting in units of R (= 1.98 cal/mol deg)?
Assuming that the surface free energy is given by Turnbull’s rule (r = aL/2), what
is r in ergs cm�2? Sketch the free energy as a function of radius for a spherical
cluster of the solid in the liquid at 227 8C. Sketch the nucleation rate as a function of
temperature, using I = 5� 1022exp(–DF*/kT), where I is the nucleation rate, DF* is
the free energy of a cluster of critical size, and k = 1.381 � 10�16ergs/8C.
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Chapter 16

Surface Layers

16.1.1

Langmuir Adsorption

The Langmuir adsorption isotherm [1] describes the equilibrium density of adsorbed
atoms on a surface. It is assumed in the model that the adsorbed atoms interact only
with the substrate, not with other adsorbed atoms. The rate at which atoms leave the
surface, k�, is the same for each adsorbed atom, and does not depend on the presence
of neighbors. For a surface that has N sites per unit area, N1 of which are occupied,
the desorption flux is:

J� ¼ k�N1 ð16:1Þ

Assuming that arriving atoms can land only on empty sites, the rate of arrival of atoms
onto the surface can be written as:

Jþ ¼ kþPðN� N1Þ ð16:2Þ

where P is the vapor pressure of the arriving atoms in the gas phase. At equilibrium the
arrival and desorption fluxes are equal, and so

k�h ¼ kþPð1� hÞ ð16:3Þ

where h as the fraction of the surface sites that are occupied,

h ¼ N1

N
ð16:4Þ

Equation 16.3 can be written:

h

1� h
¼ kþ

k�
P ¼ KP ð16:5Þ

where K = k+/k�

The surface coverage, h, is given by:

h ¼ KP

1þ KP
ð16:6Þ

Equation 16.6 is illustrated in Fig. 16.1.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The surface coverage increases linearly with pressure for low pressures, and then
saturates for large KP at h = 1.

The rate of desorption of atoms from a surface usually has a temperature depen-
dence given by:

k� ¼ t exp �Qad

kT

� �
ð16:7Þ

where t is a frequency and Qad is the adsorption energy. This is similar to the des-
orption rate that establishes the equilibrium vapor pressure as given by Eq. 20.10.
Using Eq. 16.7, the surface coverage can be written as:

h ¼

kþP

t
exp

Qad

kT

� �

1þ kþP

t
exp

Qad

kT

� � ð16:8Þ

So the surface coverage increases with pressure in the gas phase at constant tempera-
ture, because the rate of arrival of atoms at the surface increases with pressure, and the
surface coverage decreases with increasing temperature at constant pressure, because
the desorption rate increases as the temperature increases.

16.1.2

CVD Growth by a Surface-Decomposition Reaction

The deposition of silicon onto a substrate, for example, during the epitaxial growth of
silicon on silicon, takes place by the decomposition of silane that has adsorbed onto the
surface.

Figure 16.1 Langmuir-adsorption isotherm.
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The deposition rate, R, depends on the surface coverage, h, and on the surface
decomposition rate:

R ¼ krxnh ð16:9Þ

where krxn is the decomposition rate, which usually has a temperature dependence
given by:

krxn ¼ k0
rxn exp

�Qrxn

kT

� �
ð16:10Þ

The deposition rate is given by combining Eqs. 16.6, 16.8, 16.9, and 16.10:

R ¼
k0

rxnKP exp
Qad � Qrxn

kT

� �

1þ KP exp
Qad

kT

� � ð16:11Þ

which for small surface coverage reduces to:

R ¼ k0
rxnKP exp

Qad � Qrxn

kT

� �
ð16:12Þ

16.1.3

Langmuir–Hinshelwood Reaction

When several non-interacting species are adsorbed on the surface, the coverage of any
one species, i, will be given by:

hi ¼
KiPi

1þ
P

j
KjPj

ð16:13Þ

where it is assumed that each species independently occupies surface sites.
When two of the adsorbed species react to form a deposit, as is the case for example

for the MOCVD deposition of GaAs from tri-methyl gallium (CH3)3Ga and arsine
(AsH3), the deposition rate can be written as:

R ¼ krxnh1h2 ð16:14Þ

where krxn is the rate at which the tri-methyl gallium and arsine react to form GaAs
on the substrate. h1 and h2 are the fractional coverages of the two adsorbed species. The
deposition rate can be written:

R ¼ krxnK1K2P1P2

ð1þ K1P1 þ K2P2Þ
2 ð16:15Þ

This is known as a Langmuir–Hinshelwood reaction.
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16.2

Surface Nucleation

The Knudsen expression for deposition from a vapor, Eq. 20.20, is:

J ¼ Jþ � J� ¼ ðP� PeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ð16:16Þ

Increasing the pressure above Pe increases the rate of deposition; decreasing the pres-
sure below Pe increases the rate of evaporation. The two fluxes are illustrated in
Fig. 16.2. At equilibrium they are equal.

This works well for a liquid surface, for example, evaporation from the surface of a
liquid. It assumes reversible deposition and evaporation below and above P = Pe.
Growth or evaporation are assumed to be independent of the configuration of the
surface. It will be valid when there is no nucleation barrier to the formation of
new layers.

The Langmuir model, Eq. 16.6, on the other hand does not suggest continuous
growth.

Increasing pressure increases the surface coverage. Increasing the adpopulation
increases the flux of atoms from the surface until it matches the incident flux. There-
after, there is no further net deposition.

The Knudsen and Langmuir models clearly predict different behavior. One predicts
continuous growth in a supersaturated vapor, and the other does not.

The Langmuir model assumes that there is no interaction between the depositing
atoms. This is valid for the deposition of a rare gas on a substrate, for example, but it is
not true in general. It is especially not true when the material being deposited is the
same material as the substrate, where there is always an interaction between the sur-
face atoms, even if there is a barrier to the formation of new layers. If the adpopulation
is very small, it may be difficult to nucleate new layers. The nucleation of new layers is
discussed in more detail in the next section.

16.2.1

Nucleation on a Surface during Vapor Deposition

A model for nucleation on a surface can be made by combining the Langmuir model
for surface coverage with the Becker–D€ooring model for nucleation [2, 3]. The model
assumes that atoms arrive at the surface from the vapor phase, and leave the surface to

Figure 16.2 Vapor deposition.
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go into the vapor phase, and they move around on the surface to form clusters, as
illustrated in Fig. 16.3. It assumes that most of the atoms on the surface are present
as single atoms, which implies that the total density of adatoms is small.

The adpopulation density given by the Langmuir model as in Eq. 16.8 is:

h ¼ N1

N
¼ Jþ

Nt
expðEad=kTÞ ð16:17Þ

where N1 as the number of adatoms per unit area, and N as the total number of surface
sites per unit area. This is the approximate form of Eq. 16.8 for small adatom density,
N1 << N. The incident flux J+ has been retained explicitly, as in Eq. 16.2, since the
incident flux might be derived from a vapor source rather than from the local vapor
pressure.

16.2.2

Cluster Formation

The rate at which atoms join a single layer cluster of n atoms on the surface is:

Rþn ¼ N1lnat exp �QD

kT

� �
ð16:18Þ

where ln is the capture length of the cluster, which is approximately the length of
its periphery, and a is the atomic diameter, as illustrated in Fig. 16.4. t is a fre-
quency, and QD is the activation energy for surface diffusion. An atom must be within

Figure 16.3 Atoms arrive from and leave to the vapor

phase, and they move around on the surface to form

clusters.

Figure 16.4 Cluster of atoms on a surface.
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a distance a from the cluster in order to join it in one jump. N1lna is the number of
adsorbed atoms within distance a from the cluster.

The energy of a cluster of atoms on the surface can be written as in Eq. 15.18:

En ¼ �n�Eþ brn1=2 ð16:19Þ

where DE is the energy change when an atom is removed from an infinite size cluster.
Atoms join and leave a cluster along a reaction path that has an energy profile as

illustrated in Fig. 16.5. The rate at which atoms leave a cluster of n atoms depends on
the height of the energy barrier along this path:

R�n ¼ Nlnat exp �QD þ�En

kT

� �
ð16:20Þ

As before, the equilibrium distribution of clusters is given by:

NnR�n ¼ Nn�1Rþn�1 ð16:21Þ

In this case,

Rþn
R�n
¼ h exp

�En

kT

� �
ð16:22Þ

so that:

Nn

N
� hn�1 exp

Xn

i¼2

�Ei

kT

 !
¼ hn�1 exp � En

kT

� �
ð16:23Þ

Figure 16.5 Reaction path for atoms joining a cluster.
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The nucleation rate is:

I ¼ 1

2
Rþnþ

Nnx

N
¼ 1

2
Rþn�

Jþ

Nt

� �n�

exp
n�Ead þ n��E� brn�

1
2

kT

" #
ð16:24Þ

The nucleation rate depends on the surface coverage, which in turn depends on the
arrival of atoms at the surface, on the adsorption energy, and on the surface tempera-
ture. The derivation of this equation assumes that the atoms in the vapor phase are in
equilibrium with the adatoms on the surface, and that there is an equilibrium distri-
bution of clusters amongst the adatoms. The whole system is in equilibrium until
nucleation occurs. After nucleation the growth of the clusters proceeds rapidly.

This derivation assumes that the density of adatoms on the surface is small. This
same assumption is made to describe the nucleation of vapor droplets in a low density
vapor, or the nucleation of a solid in a supercooled liquid, where it is usually valid.
However, this assumption is often not valid during vapor deposition, where there
can be a very large density of adatoms. In addition, if the substrate is cold enough
so that there is little evaporation of the impinging atoms, then there will not even
be a steady-state adpopulation. It is common to evaporate metals with melting points
of about 1000 8C onto a substrate at room temperature, which is too cold for any sig-
nificant evaporation to occur. The adatom density will increase with time. Indeed, the
critical nucleus size can be as small as a few atoms under these conditions. But even
without that, as the surface coverage increases, more and more of the atoms will have
to occupy sites next to other atoms, so that the clusters will increase in size, and then
they will begin to merge, so this analysis will not be relevant.

16.2.3

Rate Equations

The early stages of deposition can be described with time-dependent equations for the
rate of buildup of the cluster distributions [4]. We will assume that most of the atoms
are present as single atoms, so that the clusters grow and shrink only by the addition or
subtraction of single atoms. The rate at which the number of single atoms on the
surface increases is:

dN1

dt
¼ Jþ � N1t exp �Ead

kT

� �
� 2N1Rþ1 þ 2N2R�2 �

X1
n¼2

ðNnRþn � Nnþ1R�nþ1Þ

ð16:25Þ

and the rate of growth of a cluster of n atoms is:

dNn

dt
¼ Nn�1Rþn�1 þ Nnþ1R�nþ1 � NnRþn � NnR�n ð16:26Þ

The early stages of deposition can be modeled using these simultaneous differential
equations that can be solved numerically assuming that there are initially no adsorbed
atoms on the surface. The development of the cluster distribution can be followed with
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time as the adatom density increases. The equations are only valid while the adatom
density is small and the clusters are well separated so that the assumption that the
clusters grow only by the addition of single atoms is valid. These rate equations do
not include the coalescence of clusters.

The calculations require a knowledge of the adsorption energy, Ead, the activation
energy for surface diffusion, QD, and the free energy to form the clusters of various
sizes, En.

These equations predict more or less correctly the buildup of the total adpopulation.
They exhibit a change in the rate of increase of monomers when dimmer formation
becomes significant. But these equations are based on the assumption that there is a
single configuration for a cluster of containing n atoms, and on the assumption that
clusters grow only by interactions with single atoms. They do not predict the correct
cluster distributions.

For surface deposition, the cluster distributions can be measured with scanning
tunneling microscopy (STM). Comparison of calculated results with these experimen-
tal data is a much more stringent test than is possible with nucleation in a liquid or a
vapor, where the cluster distributions are unknown, and the only experimental datum
is the nucleation temperature. Even more complex sets of rate equations than Eqs.
16.25 and 16.26 have been unable to produce the cluster distributions that are similar
to the experimental results.

Monte Carlo computer simulations, which we will discuss in more detail below, do
give the experimental cluster distributions.

16.3

Thin Films

16.3.1

Epitaxy

Epitaxial deposition is the term used to describe the case where the lattice structure
of the deposit is coherent with the lattice structure of the substrate. The substrate is
usually a single crystal. The simplest version is when the deposit and the substrate are
the same material. This is known as homoepitaxy. If the deposit is a different material
than the substrate, it is called heteroepitaxy. Both of these are widely practiced.

16.3.1.1 Homoepitaxy

The most widely practiced form of homoepitaxy is silicon on silicon. The single crys-
tals of silicon produced by Czochralski growth contain about 1018 oxygen atoms
per cm3, are boron doped, and have a resistivity of about 10 � cm. A much high-
er-resistivity layer of silicon can be grown epitaxially on such a wafer. The doping
level and type in the layer can also be different.
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Silicon is deposited by a chemical vapor deposition (CVD) process, using silane,
SiH4, or a chloro-silane, SiH4–xClx.

SiH4 Ð Siþ 2H%2 ð16:27Þ

The substrate wafer is heated in a vacuum chamber, and when silane is introduced
into the chamber, some of it deposits on the hot substrate, where the silane molecules
break up, depositing the silicon, and the hydrogen and chlorine go off into the gas
phase.

Silicon can also be deposited epitaxially on silicon by molecular beam epitaxy (MBE)
in an ultra-high vacuum (UHV) system.

In order for the deposit to be epitaxial, the surface of the wafer must be clean. The
wafer is cleaned before it is put into the deposition chamber. In CVD, the hot wafer is
cleaned with HCl vapor, which etches the surface. In MBE, the surface is usually
cleaned with an ion beam.

16.3.1.2 Heteroepitaxy

Heteroepitaxy refers to the growth of a single crystal layer of one material on a single
crystal substrate of a different material. In some cases, the layers are components of a
device structure.

Silicon on sapphire (SOS) is an example of heteroepitaxy. Silicon can be deposited
on a sapphire wafer by the process described above. The epitaxial layer is far from
perfect, but it is good enough to make CMOS devices. The sapphire (Al2O3) substrate
is more rugged than a silicon wafer. Since it is not subject to electro-magnetic impulse
(EMP), the military likes to use devices made with this material.

The ubiquitous gallium arsenide lasers are made by depositing layers of various
compositions of GaAlAs onto GaAs substrates. The lattice parameter of GaAs does
not change when aluminum is substituted for gallium.

GaInAsP lasers are used for telecommunications because they emit at a wavelength
of 1.55 micrometers, which is where silica fibers are most transparent. These lasers are
grown on InP substrates, and the composition of the deposit is adjusted so that there is
lattice match.

The new gallium nitride blue LEDs and lasers are another example. Gallium nitride
is, as yet, impossible to grow as a single crystal. The GaN is usually deposited on a
sapphire or other substrate.

A process for growing GaAs layers epitaxially on silicon was recently announced.
Researchers have tried to do this for many years, but they have been unsuccessful
because the lattice mismatch is large. Silicon wafers are much less expensive than
GaAs wafers, and there would be a big cost advantage to using silicon substrates
for GaAs devices. It was reported that strontium titanate could act as a transition layer
between silicon and GaAs to produce epitaxial growth. Unfortunately, the GaAs grown
by this process proved not to be of device quality.

Good epitaxy usually requires a small lattice mismatch, of less than a few per cent,
between the deposit and the substrate. This is a fairly easy criterion to apply, because
tables of lattice parameters are available.
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Good epitaxy also requires the right chemistry, although it is difficult to say exactly
what that means.

If the chemistries are similar and the lattice constants match, then good epitaxy is
likely. For example, for GaAlAs on GaAs, both the lattices match and the chemistry
matches. The same can be said for the growth of lattice-matched garnets on other
garnets, as is done to make optical isolators.

Sometimes good epitaxy occurs without a good lattice match and sometimes it does
not work with a good lattice match. An example of the latter is silicon on CeO2.

A mysterious case of good epitaxy is gold on rock salt (NaCl). Gold will deposit
epitaxially on a cleaved (100) face of rock salt. It is not perfect epitaxy, but the lattices
align within a few degrees. But if the rock salt is cleaved in a vacuum, the deposit is not
epitaxial. Exposure of the cleaved surface to air, so that a layer of water adsorbs on the
surface, is necessary. The lattice match is not good in this case, and the chemistry is not
at all obvious.

Increasingly, experimenters are introducing intermediate layers, or complex proces-
sing steps designed to modify surface layers, in order to promote good heteroepitaxy.
The intermediate layer, or the processing steps, which will work are usually not ob-
vious, but must be found empirically.

16.3.2

Deposited Surface Layers

A deposited layer can be:

* crystal, amorphous, or liquid
* islands or layers
* monolayer or multilayer
* aligned with the substrate or not
* small islands that are mobile or stationary

Just about anything that you can imagine will happen in some system or another.

16.3.2.1 Classes of Deposited Layers

Surface scientists have defined three classes of deposited layers [5, 6], each named for
pioneers in the field.

Volmer–Weber

Volmer–Weber growth is island growth, as illustrated in Fig. 16.6. The islands are
often three-dimensional rather than monolayers. The deposit nucleates as indepen-

Figure 16.6 Volmer–Weber growth.
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dent islands that may or may not be aligned with the substrate. Atoms can migrate
across the surface to the islands. The islands grow, and then can merge or coalesce
when they impinge on each other.

Frank–Van der Merve

Frank–Van der Merve growth is layer by layer growth. The atoms can migrate across
the surface to the edge of the step. This is the growth mode that provides good epitaxy.

Stranski–Krastanoff

Stranski–Krastanoff growth is island growth, but the islands form on top of a few
monolayers of the same deposited material. An example is cadmium on tungsten.
Tungsten has a much greater binding energy than cadmium. So the first few mono-
layers of cadmium that are deposited on tungsten bind more tightly to the tungsten,
even though the lattice parameter is wrong, than the cadmium atoms are bound to-
gether in cadmium. Then, after a few monolayers have been deposited, the effect of the
tungsten on subsequent layers is reduced, so the cadmium deposits with its usual
lattice parameter, which is different from that of the adsorbed layers. The cadmium
forms islands on the adsorbed layers of cadmium.

16.4

Surface Reconstruction

The atoms at the surface of crystals are not bound to lattice sites in the same way that
atoms are in the bulk, where regular packing of the atoms is required. The surface
atoms can relax their positions in response to the different binding configuration
at the surface, which is due to the absence of neighbors on one side.

Figure 16.9 shows the 7�7 reconstruction of the (111) surface of silicon. The per-
iodicity of the surface rearrangement is seven times that of the underlying lattice. In
LEED and RHEED patterns this shows up as six intermediate diffraction spots be-
tween the lattice peaks. Without reconstruction, the (111) surface of silicon would
have many unsatisfied bonds sticking out into space. But these can pair up, and
the atoms can move, in order to reduce the free energy of the surface. The presence
of this reconstruction was known long before surface tunneling microscopy (STM),

Figure 16.7 Frank–Van der Merve growth.

Figure 16.8 Stranski–Krastanoff growth.
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which was used to make the image in Fig. 16.9. There were about 20 models explaining
the surface reconstruction before STM. STM eliminated about half of these, but they
have been replaced with new, improved models. The problem is that there are very
accurate wave functions for bulk silicon based on planar wave functions. But the atom
positions are fixed in these models, and there is no simple way to project the plane
waves out into space where there are no atoms, and at the same time allowing the
surface atom positions to relax.

The surfaces of many crystals relax to form surface reconstructions. In most cases,
the surface must be very clean in order for the reconstruction to be observed. The
formation of the silicon 7�7 pattern on the (111) face at about 700 8C is used as a
test for surface cleanliness.

If atoms are deposited onto a reconstructed surface, the surface atoms must rear-
range into the bulk structure during deposition in order for the growth to proceed. The
rearrangement process can be quite complex, as is the case for example on GaAs (211),
which reconstructs in a 2�1 pattern.

16.5

Amorphous Deposits

Deposited layers can be amorphous. When silicon is deposited onto a substrate that is
below about 400 8C, the deposit is amorphous. Germanium deposited at low tempera-
tures is also amorphous. Materials that form metallic glasses, which are usually a metal
alloyed with a non-metal, can be deposited as an amorphous layer. Electroless nickel
deposits, which contain phosphorus, are often amorphous. And of course, deposited
silica is amorphous. But as is discussed in Chapter 20, pure metals do not form amor-
phous deposits.

Figure 16.9 STM image of 7�7 surface reconstruction on silicon (111).
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Silicon and germanium can also be made amorphous by ion implantation as illu-
strated in Fig 6.9. The amorphous phase of these two materials is distinct from both
the liquid and the crystalline phases. The amorphous phase is a randomized version of
the crystal, not a derivative of the liquid structure. The atoms all have four nearest
neighbors in the amorphous phase. The liquid of these two materials is metallic,
the atoms in the liquid have about nine nearest neighbors. The liquid is more dense
than either the crystalline or amorphous phase. There is a first-order phase transition
between the liquid and the amorphous phase, as illustrated in Fig. 16.10a.

The amorphous phase melts at a lower temperature than the crystal. It is not the
lowest free energy phase at any temperature, but the transformation rate of the amor-
phous phase to the crystalline phase is negligible at low temperatures. This is also true
for window glass, which is formed by quenching the liquid.

For very rapid crystallization, for example, after melting with a short laser pulse, an
amorphous layer of silicon can grow directly from the melt. This is illustrated sche-
matically in Fig. 16.10b. At a temperature some distance below the melting point of the
amorphous phase, the amorphous phase will grow more rapidly from the melt than
the crystalline phase. Formally this occurs because the entropy difference between the
liquid and the amorphous phase and is smaller than that between the liquid and the
crystal. This means that the term exp(–L/kTM) = exp(–DS/k) in Eq. 20.25 is larger for
the liquid to amorphous transition, and so the growth rate is faster, as illustrated in
Fig. 16.10b. Another way to look at this is that for very rapid growth the atoms do not

Figure 16.10 a) Schematic free energies of the

crystal, liquid and amorphous phases of silicon.

b) Schematic freezing and melting rates of the

crystal and amorphous phases of silicon.

a)

b)
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have time to correct mistakes in their position as is required in order to grow a good
crystal. For very rapid growth, the errors propagate and amplify. But in spite of this,
each silicon atom still has four nearest neighbors.

Amorphous silicon can crystallize directly. The crystallization rate is a straight line
on an Arrhenius plot over several orders of magnitude, as shown in Fig. 16.11.

These rates are quite slow compared to the rates at which the interface between a
crystal and a liquid can move, which can be meters per second. This difference in rates
permits a process that has been termed explosive crystallization. There is a tempera-
ture interval between the melting point of the amorphous phase and the crystal phase
in Fig. 16.10. In this interval, the amorphous phase will melt, and the liquid will crys-
tallize. If a small volume of liquid is created in an amorphous layer, for example from a
spark or a laser pulse, the liquid will crystallize rapidly. There is an evolution of heat
when the liquid crystallizes, and the heat from the crystallization can melt more of the
amorphous phase. The overall process is exothermic, since the crystal is a lower-energy
configuration than the amorphous phase. The melting front and the crystallization
front are coupled together, and propagate throughout the sample at close to the speed
of sound.

Figure 16.11 Crystallization rate

of amorphous silicon [7].
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16.6

Surface Modification

The surfaces of materials are often modified, for example, to improve the surface
hardness, to improve wear resistance, or to improve corrosion resistance. There
are several techniques that are used.

A thin layer on the surface of a sample can be melted with a short laser pulse. For
example, a 25-ns laser pulse with an energy density of about 1 J cm�2 will melt the
surface of a silicon wafer to a depth of about 1–2 micrometers. The liquid layer will re-
crystallize in a microsecond or so, re-growing from the substrate. This process is
sometimes used to remove ion implantation damage in silicon, where the melted
layer regrows as a single crystal. If the recrystallization rate is too fast, the melted
layer will transform to the amorphous state. Laser heating is also used to transform
a thin layer of deposited amorphous silicon into polysilicon for making thin-film tran-
sistors on active matrix liquid crystal displays.

This method is more commonly used to modify the surface properties of alloys, for
example, to harden the surface of gears. A thin layer of martensite can be created on
the surface of a ductile steel matrix by rapidly heating the surface layer with a pulsed
laser, and then letting it cool rapidly. In other cases, a thin layer of a different material
can be deposited on the surface, and then melted with a laser pulse, so that the de-
posited layer becomes alloyed into the surface of the substrate. On re-freezing the new
surface layer will have quite different composition and properties from the bulk. The
new surface layer will often have a very fine grain size, or even be amorphous, because
of the fast quench.

The composition and properties of a surface can also be modified by ion implanta-
tion, perhaps followed by an anneal.

Electroless nickel containing phosphorus forms a very hard layer, either as a very
fine-grained polycrystal or as an amorphous phase. This is used to coat the interior
surfaces of high-precision steel molds to be used for precision casting of plastic parts.

Plasma spraying is used to coat surfaces. The plasma can be either an electric dis-
charge or a flame. Particles are introduced into the plasma in a gas stream where they
melt and then they impinge onto the surface to be coated. This is a very rapid and
relatively inexpensive process. A major problem is with spalling, because the hot
liquid droplets spread out when they hit the surface and then they freeze rapidly.
This creates thermal stresses, resulting in adhesion problems between successive
droplets.

16.7

Fractal Deposits

Atoms arriving at a surface in random locations do not form a compact deposit unless
they have enough mobility to move around on the surface after they land [8]. The
illustration in Fig. 16.12 was generated by selecting an initial lateral position at ran-
dom above the surface for each circle, and then moving the circle straight down to-
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wards the substrate until it runs into either the substrate or another circle, at which
point it comes to rest.

It might be expected that this process would result in a relatively compact uniform
layer, rather than a structure that has so much open space.

If the algorithm is changed, so that the circles do not stick where they first hit an-
other circle, but rather roll over the surface of that circle until they run into a second
circle, then the branches are thicker, but the structure is still very open. Adding an
attractive force between the arriving atoms and atoms on the substrate, and letting
the atoms move locally until they find a stable position makes the columns wider,
but there is still a lot of open space.

If the circles are incident on the surface at an angle, the average direction of the
stalks changes, but not as much as the incident angle was changed.

This process occurs during vapor deposition if the atoms cannot move around after
they land on a surface.

When a material with a high melting point is deposited on a cold substrate, it can
either form a polycrystalline deposit, or it can form a columnar structure as described
above. There is a transition between the two structures that depends on the tempera-
ture of the substrate [9]. At low temperatures the deposit is columnar with open spaces
between the columns, while at high temperatures the deposit is compact and polycrys-
talline. For plasma deposition, where the incident atoms have an energy that is much
higher than usual thermal energies, the transition occurs at a lower substrate tempera-
ture.

Deposition in the polycrystalline region is discussed below. In the columnar region,
the columns are typically 5 to 10 nm in diameter, and separated by gaps of about half
that. A major fraction of the atoms in the deposit are at a surface of a column. There is

Figure 16.12 Fractal deposit.
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evidence that amorphous silicon deposits have this columnar structure, but it is dif-
ficult to detect because of contrast problems in the electron microscope.

This process has been used to reduce spalling caused by thermal expansion mis-
match between the thermal barrier coating (TBC), usually zirconium oxide, which
is deposited on the nickel-based superalloy to make the blades in jet engines. The
columnar structure is much more compliant in the lateral direction than a solid coat-
ing. The structure of the coating can be alternated between the columnar and the
polycrystal modes during deposition, to provide a compliant coating that also prevents
the hot gases from coming into contact with the nickel alloy.

16.8

Strain Energy and Misfit Dislocations

An adlayer can be coherent with the substrate, which is the desired condition for good
epitaxial growth, as illustrated on the left in Fig. 16.13. Alternatively, the deposit can
have a structure that bears no relationship to that of the underlying substrate, in which
case the interface is termed incoherent. The interface can also be partly coherent if
there are misfit dislocations in the interface, as illustrated on the right in Fig. 16.13.

The elastic strain energy in an incommensurate adsorbed layer depends on the
thickness of the layer. The elastic strain energy in the layer can be reduced by intro-
ducing misfit dislocations at the interface between the layer and the substrate. When
the layer is thin, introducing the misfit dislocations increases the total energy of the
layer. When the layer is thick enough, the total energy can be reduced by introducing
misfit dislocations. Van der Merve and Frank [10] calculated the critical thickness at
which this should happen.

The misfit strain, f, is the difference between the lattice parameter of the substrate
and the deposit:

f � as � a0

a0

ð16:28Þ

Figure 16.13 Coherent

strained layer and a semi-

coherent layer with misfit

dislocations.
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The total elastic energy per unit area in the epitaxial layer without misfit dislocations
can be written as:

Ee ¼ h

Z
rde ð16:29Þ

where h is the thickness of the layer, r is the stress in the layer and e is the strain in the
layer. For a thin layer on a thick substrate, the strain will be uniform through the
thickness of the layer, a condition known as plane strain. The stress in the layer is
related to the strain by r = Be, where B is the appropriate elastic constant. So the
total strain energy is:

Ee ¼ h

Z
Bede ¼ 1

2
hBe2 ð16:30Þ

Without misfit dislocations, the strain in the layer is the misfit strain:

e ¼ f ð16:31Þ

Introducing dislocations into the interface with a spacing S, as illustrated in Fig. 16.14,
reduces the strain in the layer by:

d ¼ b

S
ð16:32Þ

where b is the Burgers vector of the dislocations. The strain in the layer with disloca-
tions is e = f–d, so the total strain energy per unit area in the layer with dislocations is:

Ee ¼
1

2
ðf � dÞ2Bh ð16:33Þ

The energy of a dislocation line per unit length can be written as:

Db ln
R

b
þ 1

� �
ð16:34Þ

Figure 16.14 Misfit dislocations.
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The first term in the parentheses is the energy in the elastic strain field around the
dislocation, and the second term represents the energy associated with the dislocation
core. D is the appropriate elastic constant for the strain field around a dislocation. The
elastic constants of crystals are dependent on the direction of the deformation, so in
general the two elastic constants, B and D will be different. R is the upper limit on the
size of the strain field around a dislocation, which we will take to be the thickness of the
layer, h.

For an area of the interface A = l2, the number of dislocation lines is l/S.
As illustrated in Fig. 16.15, if the length of each dislocation line is l, the total length of

dislocation in the area A = l2 is:

l2

S
¼ A

S
ð16:35Þ

So the total length of dislocation per unit area is 1/S.
The total energy per unit area due to the dislocations is:

Ed ¼ D
b

S
ln

h

b
þ 1

� �
¼ Dd ln

h

b
þ 1

� �
ð16:36Þ

The total energy per unit area due to the elastic stress in the film and the dislocations
is:

Etotal ¼ Ee þ Ed ¼
1

2
ðf � dÞ2BhþDd ln

h

b
þ 1

� �
ð16:37Þ

The spacing, S, which results in the smallest total energy can be found be minimizing
the total energy with respect to d:

dEtotal

dd
¼ 0 ¼ �ðf � dÞBhþD ln

h

b
þ 1

� �
ð16:38Þ

Figure 16.15 The total length of

dislocation per unit area is 1/S.
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The minimum total energy occurs for:

d ¼ f � D

Bh
ln

h

b
þ 1

� �
ð16:39Þ

For small thickness, h, the second term will be large, and so the right-hand side is
negative, which means there is no positive value of d that minimizes the total en-
ergy. For

f >
D

Bh
ln

h

b
þ 1

� �
ð16:40Þ

there is a finite value of d that minimizes the total energy. The critical value of the
thickness where this transition occurs is:

hc ¼
D

Bf
ln

hc

b
þ 1

� �
¼ D

B

a0

as � a0

� �
ln

hc

b
þ 1

� �
ð16:41Þ

There should be no misfit dislocations for layer thicknesses below this critical value.
But this does not imply that misfit dislocations will always be present for thicknesses

Figure 16.16 Top: A foreign particle initiating a dislocation loop.

Bottom: The dislocation loop creates a misfit dislocation at the interface.
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above this critical value. This is not a flaw in the analysis, there are refinements of this
analysis that also do not predict when misfit dislocations are found to be present ex-
perimentally.

Misfit dislocations are usually found only at thicknesses considerably greater than
hC. They do not form spontaneously just because their presence would reduce the total
energy. There is a nucleation barrier to their formation. Experimentally, there is a wide
variation in the onset of misfit dislocations, even in the same material.

It has been shown that the misfit dislocations start at defects in the layer [11]. Small
foreign particles in the stressed layer will act as stress concentrators: they will have
larger stresses around them.

When the stress becomes large enough, these will blow out dislocation rings, which
will expand laterally and vertically. At the top of the layer, a dislocation will run out of
the surface, making a step. At the bottom of the layer, the dislocation will get trapped at
the interface, where it will grow into a line as the dislocation loop expands laterally in
the layer, as sketched in Fig. 16.16. The dislocations in the interface are the misfit
dislocations. The dislocations that expand towards the substrate due to the misfit
stress have the correct Burgers vector to act as misfit dislocations to reduce the strain
in the layer.

The formation of misfit dislocations has been discussed above using two-dimen-
sional illustrations. In general, the stress in the substrate is not unidirectional, and
so a grid of misfit dislocations in the interface is necessary to reduce all the misfit
strain energy.

16.9

Strained-Layer Growth

16.9.1

Surface Modulation

The total elastic energy in a strained layer can also be reduced by modulations of the
surface, as shown in Fig. 16.17. This is a purely elastic effect, and it occurs sponta-
neously.

16.9.2

Strained-Layer Superlattice

The growth of alternating layers of the epitaxial material and the substrate material has
been used to grow thick layers without misfit dislocation, as illustrated in Fig. 16.18.

Figure 16.17 Surface modulation can reduce

the total strain energy of a layer.
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This is known as a strained-layer superlattice. Each epitaxial layer is kept below the
critical thickness. The overall strain in the layers is an average of the two types of
layers, and so the overall deposit does not exceed the critical thickness.

16.9.3

Graded-Strain Layers

Graded-strain layers are made by grading the composition in order to change the
lattice parameter gradually, in order to keep the stress below the critical value where
misfit dislocations form, as illustrated in Fig. 16.19.

This process is used to make silicon-germanium alloys on a silicon substrate. These
alloys have a smaller bandgap than either silicon or germanium, and are used for IR
detectors. Silicon-germanium alloys are also replacing GaAs for high-frequency
devices.

Figure 16.18 Strained-layer superlattice.

Figure 16.19 Graded-strain layer produced by

grading the composition.
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Problems

1. Computer simulation of Langmuir adsorption
Start with an array of 20 � 20 lattice sites.
Add atoms randomly at a rate k+P to the empty sites, and remove atoms randomly
from the surface at a rate k�, until the surface adpopulation stops changing in time.
Choose k+, k� and P.
Select a site at random.
If the site is empty, add an atom if k+P > Rnd (Rnd = a random number).
If the site is occupied, remove the atom if k� > Rnd.
The surface coverage � will increase with time and will saturate at some value �e.
Repeat this for various values of P.
Plot �e vs KP where K = k+/k�.
Compare your data with the Langmuir adsorption isotherm:
� = KP/(1 + KP)
Note:
Most random-number generators provide 0 � Rnd � 1, so the simulation will not
work if Rnd is compared with a number greater than 1.
For KP = k+P/k� � 1, use k� = 1, and various values of k+P � 1
For KP = k+P/k� > 1, use k+P = 1, and various values of k� � 1

2. Discuss the formation of new layers during epitaxial growth from the vapor
phase.
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Chapter 17

Thin-Film Deposition

17.1

Liquid Phase Epitaxy

Liquid phase epitaxy (LPE) is a solution growth process where the solution consists
primarily of one of the components of the crystal [1]. For example, GaAs can be grown
from a gallium-rich solution of gallium and arsenic at a temperature far below the
melting point of GaAs. The relevant phase diagram is illustrated in Fig. 17.1.

As discussed in Chapter 9, the solution must be cooled below the equilibrium tem-
perature of the liquid in order for growth to take place. In Fig. 17.1 the melting point of
GaAs is labeled T1, and the stoichiometric composition is labeled A. A solution of
composition B is in equilibrium with crystal of composition E at temperature T2.
LPE growth for this composition takes place at C, at the temperature T3, where the

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3

Figure 17.1 GaAs phase diagram.
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equilibrium liquid and solid equilibrium compositions are D and F, respectively. The
growth temperature must be carefully controlled to limit fluctuations in the growth
rate.

In the phase diagram, GaAs is represented as a line compound. But the crystal that
grows is likely to be slightly off the precise stoichoimetric composition, and this slight
difference introduces a significant defect density on one of the sublattices in the crys-
tal. For comparison, the typical equilibrium vacancy concentrations in a metal crystal
at its melting point is typically about 0.1 %. A binary crystal that is off-composition by
only 0.1%, has a similar defect density. The defect density resulting from LPE growth
depends sensitively on the position of the phase boundary.

Liquid phase epitaxy methods have the advantage that impurities with small k-values
tend to stay in the liquid, so that the crystal can be purer than the starting materials.

17.2

Growth Configurations for LPE

There are three configurations that are used for liquid phase epi: tipping, dipping and a
slider [2]. The first two are relatively simple methods, and the latter is a more complex
setup designed to grow multi-layer structures.

Tipping

In tipping, the substrate is put into one end of a boat or container, and liquid is melted
in the other end of the boat. The liquid is then slightly undercooled so that growth will
occur when the liquid comes into contact with the crystal. The boat is then tipped so
that the substrate is immersed in the liquid. After a time during which a layer of the
desired thickness grows, the boat is tipped back to remove the liquid from the sub-
strate. The container can be sealed before starting the growth process, in order to
control the atmosphere if one component is volatile.

Dipping

Dipping is also a very simple process. The substrate is held vertically in an open holder,
and then immersed in a slightly undercooled liquid of the appropriate composition. A
thin layer grows in a short time, and then the substrate is removed from the liquid.
This method has been used very successfully for growing garnet layers of various
compositions on gadolinium gallium garnet (GGG) substrates. GGG is relatively
easy to grow as a single crystal, and the composition of garnets can be varied so as
to obtain a garnet with desired properties that is also lattice matched to GGG. This
method was used to grow epitaxial layers for magnetic bubble memories. The tech-
nology for making magnetic bubble memories was outstanding, but the product could
not compete commercially with semiconductor memory. Dipping is used today to
make magneto-optical isolators, by growing layers of magnetic garnet of precise thick-
ness on GGG substrates.

Multiple layers of varying compositions can be grown using tipping or dipping with
liquids of different compositions.
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Slider

Multiple layers of different compositions are more readily grown using a slider, which
is illustrated in Fig. 17.2.

Each of the bins contains a solution of different composition. The substrate holder
slides so that the substrate can be positioned under each bin for the desired growth
period. The liquid is on top of the substrate, but since the slider is usually made of
graphite, and the liquid does not wet graphite, the liquid does not leak out around the
slider if the slider fits with a reasonable tolerance. The slider assembly is inserted into a
furnace so that multiple layers can be grown without cooling the substrate. The tem-
perature of the furnace can be ramped up or down, or the whole growth process can be
carried out isothermally, by controlling the composition in each bin. The liquid in the
first bin can be slightly superheated so as to dissolve or etch the substrate before
growth, in order to clean it. A dummy substrate can be used to “condition” the liquid
in each bin, ahead of the growth substrate. A solid source material can be floated in a
bin to control the composition of the liquid in the bin. Several bins can have different
compositions in order to grow the layers of a heterostructure.

The equipment required for LPE is relatively inexpensive. Experts can produce out-
standing results with LPE, but it is a difficult process to control consistently. The first
continuous working semiconductors were made by LPE, but the method has not been
used extensively in production.

17.3

Chemical Vapor Deposition

Chemical vapor deposition (CVD) [3] is commonly used to grow a layer of a different
concentration or doping level or even different dopant type than the substrate. The
process makes use of volatile molecules that carry the atoms to be deposited to the
substrate. On the substrate, the molecules react or decompose, depositing the atoms
to be added to the crystal and creating a volatile product, which leaves the surface.
Epitaxial layers can usually be grown more rapidly by CVD than by the MBE pro-
cess, which is discussed below. The growth is carried out in a vacuum chamber at
moderate pressures that are determined to maximize the growth rate. In general,

Figure 17.2 LPE slider.
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the hardware is much more expensive than LPE, and somewhat less expensive than
MBE equipment. It is widely used as a production method.

For example, silicon epi layers are grown from silane or from a variety of chloro-
silanes. Silicon tetrachloride (SiCl4) and trichlorosilane (SiHCl3) are liquid at room
temperature. Dichlorosilane (SiH2Cl2), chlorosilane (SiH3Cl), silane (SiH4) and disi-
lane (Si2H6) are gaseous at room temperature. All have been used to grow silicon
epitaxial layers. The silanes transport silicon to the surface in the gas phase (the
liquids are heated so that they evaporate), where they decompose on the hot substrate
depositing silicon, and then the hydrogen and chlorine leave the surface. The chlor-
osilanes have the advantage that many metal chlorides have high vapor pressures, and
so the metals are not incorporated in the layers.

Figure 17.3 illustrates some usual configurations for CVD reactors.
In the horizontal reactor, the wafers are supported at an angle to obtain lamellar

flow over the surface of the wafers. In a barrel reactor, the substrates lean against
the barrel, which is rotated in order to obtain a uniform deposit. In a vertical reac-
tor, also known as a pancake reactor, the substrate holder is rotated to obtain a uni-
form deposit. In each of these reactors, the geometry and gas flow in the reactor is
critical in order to obtain a uniform deposit. In a low-pressure CVD (LPCVD) reac-
tor, the pressure is reduced so that the mean free path of the gas atoms is less
than the spacing between the wafers, so the uniformity of the deposit does not depend

Figure 17.3 CVD reactors.
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on controlling the gas flow. Figure 17.4 shows a planetary reactor, where the substrate
holder is rotated, and each wafer is rotated on the substrate in order to promote the
uniformity of the deposit.

There are two processes that are involved in the growth. The first is the process by
which the reactants are delivered to the surface by gas-phase flow and diffusion. The
second is the reaction on the surface that results in the addition of atoms to the crystal.
The slower of the two processes is rate limiting, and controls the process. This is
illustrated schematically in Fig. 17.5.

Figure 17.4 Planetary.

Figure 17.5 Chemical-potential

differences along the reaction path

from the input gas to the crystal.
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Dl8 is the total chemical potential difference between the inlet gas and the deposit.
In Fig. 17.5a, the growth is reaction rate limited: there is a large chemical potential
difference driving the interface growth process. In Fig. 17.5b, the growth is boundary
layer limited: most of the chemical potential difference is taken up by transport to the
surface.

It is preferable to operate in a mode where the growth is transport limited since
surface reactions are usually strongly temperature dependent. The growth is easier
to control when operating in a mode where the growth rate is relatively independent
of temperature. This means that the kinetic processes on the surface should be fast, so
that they are not rate limiting. If the crystal growth process is near equilibrium, where
the chemical potential driving the growth process is small, there are likely to be fewer
growth defects since mistakes tend to be corrected by the reversibility of the process.

The control of the gas flow in the growth chamber is critical in reactor design. The
chambers are designed to produce lamellar flow over the wafers, and then the reactant
gases reach the surface by diffusion through a boundary layer above the wafer. The
growth rate then depends on the flux to the surface:

J ¼ D
dC

dy

� �
Surface

ð17:1Þ

where D is the diffusion coefficient, and dC/dy is the concentration gradient normal to
the surface. Writing the concentration gradient as C/d, where d is the effective bound-
ary thickness, and replacing C = n/V, the number of molecules per unit volume, with
P/RT gives:

J � D
PInput � PInterface

RTd
ð17:2Þ

Epitaxial layers of III-V compound semiconductors are usually grown by CVD with an
excess of the group V element, often a ratio of 3 to 1. The growth rate then depends on
the arrival rate of the group III element at the substrate. So in this case, the pressure in

Figure 17.6 Typical growth

rate of III-V compounds as a

function of alkyl flow rate.
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Eq. 17.2 would be the partial pressure of the group III component. Figure 17.6 illus-
trates the growth rate of GaAs, AlAs, and InP, which are grown with an excess of
arsenic or phosphorus, as a function of the flow rate of the alkyl component. The
growth rate increases linearly with the flow rate of the alkyl.

Epitaxial growth of II-VI compounds is usually carried out with an excess of the
more volatile component.

17.4

Metal-Organic Chemical Vapor Deposition

Metal-organic CVD (MOCVD) or organo-metallic CVD (OMCVD) are different terms
for the same process, where the carrier molecules used to deliver the reactant(s) to the
surface are organic [4]. There is a wide variety of potential metal-organic compounds,
and the choice of reactants has received a lot of attention. Perhaps the simplest and
most widely used are trimethyl compounds, exemplified by the growth of GaAs from
trimethyl gallium and arsine. Figure 17.7 presents the growth efficiency of GaAs as a
function of temperature.

At high temperatures, the growth is mass transport limited, and the growth effi-
ciency is limited by the desorption of the reactants. At low temperatures, there is
low mobility on the surface, and the growth becomes limited by the reaction rate.
Growth is carried out near the maximum on this plot.

Data such as that illustrated in Fig. 17.8 for the growth of GaAsSb from TMGa,
TMSb, and TMAs must be accumulated for successful growth.

This figure indicates that droplets of either gallium or antimony can form on the
surface, depending on the vapor pressures of the reactants. Good crystals cannot be
grown in the regions where these droplets form.

Figure 17.7 The growth efficiency of GaAs from TMGa and AsH3.
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17.5

Physical Vapor Deposition

For physical vapor deposition (PVD) the atoms to be deposited usually come from a
material that has been heated to a temperature where it evaporates at a reasonable rate.
This usually means that the source material is melted. This method is not suitable for
any compounds that decompose more readily than they evaporate. This is not a pro-
blem with metals. The material to be evaporated is often held in a small basket that is
heated electrically. For better control of the evaporative flux, the source is often con-
tained in a Knudsen cell. This is a cell as illustrated in Fig. 17.9.

It is basically a can with a small aperture through which gas atoms can escape into a
larger vacuum chamber where they will deposit on a substrate. Inside is the vapor
source. The vapor pressure inside the chamber is determined by the temperature
of the source material. The aperture is made small enough so that the vapor that
is emitted from the cell does not significantly change the pressure inside the cell.
The vapor pressure inside the cell is determined by the source temperature:

P ¼ P0 exp �
Qevap

kT

� �
ð17:3Þ

Figure 17.8 Gas-phase pressure diagram for

the growth of GaAsSb.

Figure 17.9 A Knudsen cell.
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The flux from the cell depends on the vapor pressure inside the cell, and on the size of
the aperture. The flux of atoms arriving at a substrate from a Knudsen cell that is a
distance l from the substrate is:

Jþ ¼ PAN0

pl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ð17:4Þ

where P is the pressure inside the cell, A is the area of the aperture of the cell, N0 is
Avagadro’s number, m is the mass of the molecule, and T is the source temperature
inside the cell.

Knudsen cells are frequently used in MBE machines to provide a source for metals,
so that the metal atoms do not spray all over the interior of the chamber.

17.6

Sputter Deposition

Plasmas are discussed in Chapter 18 in terms of their use in plasma etching and
chemical milling. Plasmas are also used for deposition, and this process is known
as sputter deposition. The basic configuration is similar to a reactor as in
Fig. 18.11, or for magnetron sputtering as in Fig. 18.13. The cathode is the target ma-
terial. When it is bombarded with ions from the plasma, neutral atoms and ions are
sputtered from it. The neutral atoms pass through the plasma and deposit on the
anode, which is the substrate for deposition. The high-energy ions in the plasma
can remove atoms from just about any target. The atoms hitting the substrate are
also relatively high energy, and so they produce damage at the substrate, typically
a few atom layers deep. This process is not usually used for epitaxial growth because
of the damage. But it is used commonly for the deposition of materials that have low
vapor pressures and so are difficult to evaporate.

Both DC and rf plasmas are used for sputtering. DC plasmas can be used readily for
metals because the target is conductive. There is a problem with charge buildup with
targets that are insulators, and so these are usually sputtered using rf.

Oxides of metals can be sputter deposited using DC and metal targets, by introdu-
cing oxygen into the plasma or near the substrate surface.

17.7

Metallization

The conductor stripes on semiconductor wafers are usually deposited either by CVD,
by PVD or by sputtering. PVD has the advantage of being relatively simple. But both in
PVD and sputtering, the atoms tend to be directed towards the surface in a limited
range of angles. As a result, the coverage over steps tends to be poor. The flux onto
vertical features on the surface is less than on flat surfaces. Step coverage with CVD is
much better, because the decomposition of the carrier molecules occurs on the sur-
face. Aluminum has traditionally been deposited using PVD, and it has been difficult
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to find an appropriate carrier molecule for it. Copper can also be deposited by PVD, but
electrodeposition is now commonly used for copper metallization.

The metallization is polycrystalline, and during the early stages of metallization,
many nuclei of diverse orientation form on the surface. These merge and coalesce
into a polycrystalline deposit. The deposited metals are pure, since pure metals
have lower resistivities. The grain boundaries in pure metals are quite mobile, espe-
cially when the grain size is very small. So grain growth occurs during the deposition
process. The final grain size is usually much larger than the initial distance between
nuclei on the surface.

During growth there are also two other effects, in addition to grain growth, which
can influence the final grain size.

1. Orientations with low surface energy will create a groove at the interface, which
favors the expansion of the low energy surface over higher energy surfaces.

2. The growth rate is orientation dependent. Rapidly growing orientations will tend to
overgrow slower growing orientations, and so crowd out the slower-growing
grains.

These two orientation-dependent effects not only increase the grain size as the depos-
ited layer grows in thickness, but they also produce a preferred orientation texture in
the deposit.

The relative importance of these three mechanisms varies with material, with
growth conditions and with substrate temperature.

It is often the case that some combination of these grain-coarsening effects produces
a final grain size in the deposit that is comparable to the thickness of the deposit.

17.8

Laser Ablation

Intense laser pulses can be used to volatilize atoms on the surface of a target. The
incident radiation heats the surface locally to a temperature where atoms have enough
thermal energy to escape from the surface. Typically, the boiling point of a material is
less than a factor of two above its melting point, so the laser pulse needs to be only
about twice as energetic to evaporate atoms from the surface as to melt the surface.

The laser light in an opaque material such as a metal is absorbed very near the
surface, and so it is possible to heat a thin layer near the surface very rapidly to
the boiling point. The atoms coming from the surface have relatively high thermal
energies, but these are typically only a small fraction of an electron volt, unlike a sput-
tered atom, which will typically have about one kilovolt of energy from the plasma.
These relatively low-energy atoms can impinge on a nearby substrate without creating
damage. This process is used for epitaxial growth of materials that are difficult to
evaporate.

The laser must be pulsed in order to get a lot of energy into the surface in a short
time so that the surface heats rapidly. Also, the evaporated atoms tend to form a vapor
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cloud over the surface that absorbs the laser light and prevents the light from reaching
the surface. Pulsing the laser gives this cloud time to dissipate, so that the next pulse
can reach the surface.

Pulsed laser deposition (PLD) reliably deposits multicomponent layers with compo-
sition identical to that of the source material.

17.9

Molecular Beam Epitaxy

Molecular beam epitaxy is very simple in principle [5–7]. The growth takes place in a
high-vacuum environment. The vacuum pressure is low enough so that the atoms or
molecules go from their source to the substrate without a collision: they form a mo-
lecular beam. A simple schematic of a growth chamber is shown in Fig. 17.10.

Because the main chamber is under an ultra high vacuum (UHV), it is seldom
opened to the atmosphere. Instead, samples are introduced through load locks and
buffer chambers, which are pumped down before the sample is transferred from
them. The load lock is typically pumped down to 10�6 to 10�7 torr, while growth takes
place in the growth chamber at 10�10 to 10�12 torr. At 10�10 torr, the number of gas
atoms hitting the substrate can form a monolayer in half an hour. Layers are typically
grown at rates of about 1 lm/h. The pressure rises to about 10�6 torr during the de-
position process.

No rubber gaskets or vacuum grease can be used in a UHV system. The gaskets are
usually made from soft copper. The load lock is typically baked at 200 8C, and the buffer
chamber at 600 8C to drive off water and other adsorbed gases, and then run at room
temperature. Cryopanels are used to condense gases.

Figure 17.10 Schematic of an MBE machine.
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Typically, effusion cells, which contain a heater to evaporate source material are
used as illustrated in Fig. 17.11. The molecular beams incident on the sample are
controlled with shutters to grow various layers of different compositions.

The growth can be monitored in situ with reflection high-energy electron diffraction
(RHEED), where the electrons are incident on the sample at a grazing angle.

The growth rate in MBE is quite slow. On the other hand, it permits exquisite control
over the thickness of deposited layers, and is used to make multilayer quantum struc-
tures.

A variant on MBE has been termed chemical beam epitaxy (CBE), which uses mo-
lecular species to carry the atoms to be deposited to the surface. The environment is
UHV, so that the incident molecules form a molecular beam, but there is a chemical
reaction or decomposition on the surface to deposit the desired species.

17.10

Atomic Layer Epitaxy

Atomic layer epitaxy (ALE), also termed atomic layer deposition (ALD) is a process
where atomic layers of alternating composition deposited. This process was first
used for zinc oxide, for which it works very well. Zinc vapor is introduced into the
chamber, and a monolayer of zinc will deposit, but only a monolayer, and then the
deposition stops. Next oxygen is introduced into the chamber, and a monolayer of
oxygen deposits, and then the deposition stops. And so the deposition can be con-

Figure 17.11 Growth chamber of an MBE machine.
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trolled, a monolayer at a time, by alternating zinc and oxygen in the deposition cham-
ber. The process is relatively easy for ZnO, because the deposition of each layer is self-
limiting, although the growth of a thick layer will take a long time.

The process has also been used for GaAs, for example, using a compound such as
GaCl that is introduced into the chamber to make monolayer coverage of the surface.
Enough arsine is then introduced into the chamber to cover the Ga with a monolayer of
an arsenic-containing compound. The gases are then cycled in controlled amounts.
The chemistry is complex, and the process is tricky because the deposition of alter-
nating layers is not self-limiting, but it can be made to work.
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Problems

1. Physical vapor deposition is a very simple process. Why are all thin films not
deposited using this method?

2. When is chemical vapor deposition preferred over MBE?
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Chapter 18

Plasmas

Plasmas are used in many phases of semiconductor processing. They are used for
sputtering to remove material from a target, and to deposit it on a substrate. This
is a common method for depositing a metal. Silicon nitride, Si3N4, which is used
to encapsulate microelectronic chips is deposited from a plasma. Other elements
and compounds are deposited using plasma-enhanced chemical vapor deposition,
PECVD. And plasmas are used for reactive ion etching, RIE.

The plasmas used are low-pressure glow discharges. Most of the atoms or molecules
in these plasmas are neutrals, but some of them are ionized. The electrons that have
left the ionized atoms or molecules gain energy from the electric fields in the plasma.
The plasma is an electrical conductor, and the electrons in the plasma can move at high
speeds through the plasma. These energetic electrons then collide with the atoms and
molecules in the plasma, resulting in:

Ionization, creating more ions and electrons:
A�! �Aþ þ e
AB�! �ABþ þ e

Dissociation, creating radicals: AB�! �Aþ B

Excitation:
A�! �A�

AB�! �AB�

The excited atoms and molecules emit light when they return to the ground state. The
radicals are likely to be ionized, and are very reactive chemically.

18.1

Direct Current (DC) Plasmas

A plasma setup is illustrated schematically in Fig. 18.1.
The vacuum pump creates the low pressure inside the chamber that is necessary to

maintain a plasma. The gas inlet is used to introduce atoms or molecules into the
chamber. Without the plasma, the gas in the chamber is an insulator. A plasma is
initiated with the high-voltage source that is used to create an electrical discharge
in the chamber. This discharge creates ions and electrons in the chamber. The elec-
trons are then accelerated by the DC power supply voltage to maintain the plasma in
the region between the two electrodes.

Kinetic Processes. Kenneth A. Jackson
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The amount of energy that an electron can gain from an electric field depends on the
average distance between collisions, which is called the mean free path. A high-energy
electron loses most of its kinetic energy when it collides with an atom. The low pres-
sure in the chamber increases the mean free path of the electrons, so that they can
accelerate to higher energies. In order to maintain the plasma, some of the electrons
must be sufficiently energetic so that they will ionize the atoms or molecules during a
collision, which typically requires about 15 eV. Argon is often used in a plasma or to
start a plasma because it ionizes readily. Other elements or molecules are then intro-
duced after the plasma has been ignited.

Figure 18.1 Plasma setup.

Figure 18.2 Distribution

of charges and the resultant

electrical field in a plasma.
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In the plasma, the electrons and atoms have the same average kinetic energy, but the
electrons move much more rapidly because of their smaller mass. The electrons go to
the anode at high velocities. The ions move toward the cathode, much more slowly.
When the ions hit the cathode, they eject electrons from the cathode, and these elec-
trons accelerate towards the anode. This results in a distribution of charges in the
plasma as illustrated in Fig. 18.2. These charges modify the local electrical field, as
illustrated.

In the bulk of the plasma, the density of ions and electrons is the same, so there is no
net charge in this region. There are more ions near the cathode, because the electrons
accelerate rapidly away from there. This creates a positively charged region near the
cathode, and a negatively charged region further from the cathode. Some distance
from the cathode, the electrons have enough energy to ionize atoms, and so there
is a region of increased ion density, which contains a net positive charge. These
ions shield the field from the cathode, so the ion density drops off further from
the cathode.

Moderate energy electrons, less than about 15 eV, can excite atoms or molecules, so
that they emit light. Electron energies greater than about 15 eV are sufficient to create
ions. This results in the emission of light from the plasma as illustrated in Fig 18.3.

In the Crook’s dark space, the electrons emitted from the cathode do not have en-
ough energy to excite atoms. In the anode dark space, there are no ions. In the Faraday
dark space, the electrons have enough energy to ionize the atoms, rather than just
exciting them, so there are no excited atoms to emit light.

There is a large field in the Crook’s dark space, and so ions accelerate towards the
cathode in this region. The width of the Crook’s dark space depends on the pressure in
the chamber, and the energy of the ions hitting the cathode depends on this width.
And so the energy of the ions hitting the cathode can be controlled with pressure. This
is typically about 1 torr for DC plasmas, so that the ions can sputter atoms off the
cathode.

18.2

Radio-Frequency Plasmas

A DC plasma creates a buildup of charge on the cathode if it is an insulator, and so
radio-frequency (rf) plasmas are used to sputter atoms from insulators.

Figure 18.3 Pattern of light emission from a plasma.
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A typical configuration is shown in Fig. 18.4. A frequency of 13.56 MHz is typically
used in order to stay away from broadcast frequencies. Above about 10 kHz, the ions
cannot follow the field, but the electrons can. This creates a dark space at both elec-
trodes, as illustrated in Fig. 18.5. There is no net charge in most of the region between
the electrodes, and the electrons slosh back and forth in this region in the rf field. Ions
are accelerated towards the surfaces of the electrodes by the fields at the electrodes
that are created by the rapidly moving electrons.

The voltage V1 can be increased by up to an order of magnitude over the voltage V2

by grounding the chamber and electrode 2. This results in much more energetic ions
bombarding electrode 1.

Figure 18.4 Setup for an rf plasma.

Figure 18.5 Electric potential at the electrodes in an rf plasma.
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18.3

Plasma Etching

There are different regimes for removing material from a surface using ions that are
generated in plasmas. At one extreme is sputtering, where atoms are literally knocked
from the surface by high-energy incident ions. At the other extreme is plasma etching,
where reactive ions that are generated in the plasma react chemically with surface
atoms to create volatile species that evaporate from the surface. In between these
two extremes is reactive ion etching (RIE), which is a balanced process, combining
both kinetic and chemical removal of material. These three regimes are outlined
in Fig.18.6.

The energy of the ions in the plasma depends on the gas pressure. The lower the gas
pressure, the longer the mean free path of the electrons in the plasma, and so the larger
the electric fields in the vicinity of the electrodes, as illustrated in Figs. 18.2 and 18.5.
This field accelerates the ions towards the surface. As indicated in Fig. 18.6, at low
pressure, the energy of the ions striking the electrode is high, and material is removed
primarily by physical impact. At high pressures, the ions are incident at the surface of
the electrode with low energies, and so material is removed primarily by chemical
reactions.

This difference has consequences in selectivity and in the anisotropy of the etching
process, as illustrated in Fig. 18.7.

Selectivity is the ability of the etching process to remove different materials from the
surface at different rates. In some cases, it is desirable to remove one material selec-
tively from the surface, while not removing other materials, for example to remove a
metal but not silica, or vice versa. The choice of appropriate chemical species to create
desired ions in the plasma can accomplish this. This process will usually remove the
target material uniformly, because the ion energy is low and the mean free path is
short. The active ions arrive at the surface from random orientations and adsorb

Figure 18.6 Regimes of material removal in plasmas.
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on the surface to react with the atoms there. Since the incident ion energy is low, the
ions are unlikely to damage the substrate.

In sputter etching, high-energy ions are incident on the surface. These ions physi-
cally remove atoms from the surface by transferring some of their large kinetic energy
to the surface atoms, which then have enough kinetic energy so that they fly off the
surface. This process is relatively independent of the type of atom in the surface. Any
type of surface atom can be knocked from the surface, and so this process has low
selectivity. On the other hand, the ions are accelerated towards the surface by the large
field there, and so their velocities have a strong component that is towards the surface.
And so if there is a step on a surface, or a hole in the surface, material will be removed
from the riser of the step or from the side walls of the hole at a much slower rate than
from the flat parts of the surface. By masking part of the surface, a hole or a trench of a
desired shape can be etched into the surface. This is anisotropic etching. Because of
the high energy of the incident ions, sputtering is quite likely to displace atoms in the
substrate, creating damage and defects.

Figure 18.7 Selectivity and anisotropy of etching.

Figure 18.8 Anisotropic etching.
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The anisotropy of the etching process is increased by the accumulation of inert
species, sometimes called “peanut butter”, on the sidewalls of the etched features,
as illustrated in Fig. 18.8.

Chemical etching will attack the sides of the hole at the same rate as it attacks the
bottom of the hole, so it cannot be used to create a deep narrow trench.

The selectivity and anisotropy of the plasma etching process can be controlled by
changing the pressure and the species in the plasma, in the intermediate regime
called reactive ion etching.

The typical pressure regimes are presented in Table 18.1. The barrel and plasma
configurations are usually used for selective etching. The magnetron and ECR con-
figurations are used for sputtering.

18.4

Plasma Reactors

A typical barrel reactor is illustrated in Fig. 18.9.

Table 18.1 Typical parameters for plasma etching.

Pressure range

(torr)

Min/max eV

at surface

Typical ion density

(cm�3)

Barrel 0.1–10 3/20 1012–1013

Plasma 1–5 100/1000 5 � 1012

RIE 0.05–0.5 100/1000 109–1010

Magnetron 0.01–0.1 50/1000 109–1011

ECR 0.001–0.2 5/500 1011–1013

Figure 18.9 Barrel reactor.
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Many wafers are stacked in a rack in this type of reactor, which is typically used to
strip off a photoresist after it has been used to pattern the features in the substrate. The
reactor is run at relatively high pressures, but even so, there is a problem with the
uniformity of etching.

A typical plasma etcher is illustrated in Fig. 18.10.
This type of reactor is also usually run at relatively high pressure for a vacuum

chamber, up to 10 torr. The two electrodes are closely spaced, and the reactor is
run at high power so that the etching rate is rapid. It is used to etch dielectrics.

Two configurations for reactive ion etching are shown in Fig.18.11 The one on the
left is known as a pancake reactor. It is similar to the plasma etcher in Fig. 18.10 except
that the substrate is rotated. The barrel configuration on the right allows the simulta-
neous etching of several wafers.

RIE reactors are usually run at pressures in the 20 to 400 millitorr range. They are
used for high-resolution etching. Towards the physical etch regime, they are used to
etch oxides, nitrides, and to make etch trenches in silicon for isolation. Towards the
chemical regime, they are used to etch metals, such as aluminum. In the mixed re-
gime, they are used to etch polysilicon and silicides, as well as aluminum/copper
metallizations. It is relatively easy to control.

Some of the chemical species that are introduced in the plasma for etching various
materials using RIE are listed in Table 18.2.

The primary species used to etch both silicon and silica is the fluorine ion. Fluorine
ions are obtained from a variety of fluorine-containing compounds for RIE. The etch-
ing rates depend on the species present, and on the concentrations and chemistry in
the plasma.

Figure 18.10 Plasma etcher.
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At low concentrations, oxygen helps to break down the CF4 molecules, so the etch
rate initially increases with oxygen concentration, but at higher concentrations, it
makes stable COF2, which ties up the fluorine, and reduces the etch rate.

18.5

Magnetron Sputtering

A magnetic field produces a force on a moving electron that is perpendicular to both
the path of the electron and to the magnetic field.

~FF ¼ q~vv�~BB ð18:1Þ

Table 18.2 Chemical species used for RIE.

Silicon CF4/O2, CF2Cl2, CF3Cl, SF6/O2/Cl2, Cl2/H2/C2F6/CCl4, C2ClF5/O2,

Br2, SiF4/O2, NF3, ClF3, CCl4, CCL3F5, C2ClF5/SF6, C2F6/CF3Cl, CF3Cl/Br2

SiO2 CF4/H2, C2F6, C3F8, CHF3/O2

Si3N4 CF4/O2/H2, C2F6, C3F8, CHF3

Organics O2, CF4/O2, SF6/O2

Aluminum BCl3, BCl3/Cl2, CCl4/Cl2/BCl3, SiCl4/Cl2

Silicides CF4/O2, NF3, SF6/Cl2, CF4/Cl2

Refractories CF4/O2, NF3/H2, SF6/O2

GaAs BCl3/Ar, Cl2/O2/H2, CCl2F2/O2/Ar/He, H2, CH4/H2, CClH3/H2

InP CH4/H2, C2H6/H2, Cl2/Ar

Au C2Cl2F4, Cl2, CClF3

Figure 18.11 Configurations for reactive ion etching.
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~FF is the force on the electron, q is the electronic charge,~vv is the velocity of the electron
and ~BB is the magnetic field. The magnetic field makes the electrons follow a helical
path, with a radius r, given by:

r ¼ mv

qB
ð18:2Þ

This increases the path length for electrons to go from the anode to the cathode, which
increases the density of ions and radicals in the plasma. The magnetic field can also be
used to return electrons to the cathode, as illustrated in Fig. 18.12.

Magnetically enhanced RIE (MERIE) is illustrated in Fig. 18.13.
MERIE is used to increase the path length of electrons going from the cathode to the

anode, which increases the density of ions and reactive species.

Figure 18.12 A magnetic field is used to control the path and to increase

the path length of electrons in the plasma.

Figure 18.13 Magnetically enhanced reactive ion etching.
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18.6

Electron Cyclotron Resonance

Electron cyclotron resonance (ECR) requires a high-power microwave source. A typical
setup is illustrated in Fig. 18.14

A plasma is created remotely from the substrate by a microwave field typically at a
frequency of about 2.5 GHz. Ions extracted from the plasma are often used for photo-
resist stripping. The electron resonant frequency is given by:

x ¼ eB

m
ð18:3Þ

where m is the electron mass. For a magnetic field of 900 G, the resonant frequency is
1.6 � 1010 rad s�1 = 2.5 GHz. The particles move in circles, and gain energy from the
microwave field throughout the circle if the circumference of the circle is greater than
the electron mean free path. The accelerating electrons generate Bremsstrahlung and
can emit in the deep-UV or soft X-ray region, so shielding is required. The high-energy
electrons increase the densities of ions and radicals in the plasma.

Electron cyclotron resonance is also used to create a remote plasma from which a
high density of low-energy ions can be extracted in order to reduce wafer damage.

Figure 18.14 Setup for an electron cyclotron resonance plasma.
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18.7

Ion Milling

Ion milling is similar in principle to sputtering, but it is used to remove material
especially uniformly from a surface. Instead of a plasma in contact with the sur-
face, an ion beam is generated so that ions are incident on the surface at a small
angle. The grazing angle of incidence tends to remove any bumps from the sur-
face. But atoms are removed from the surface primarily by physical processes, as
in sputtering. Ion milling is used to prepare specimens for transmission electron mi-
croscopy, and also to clean substrates in vacuum chambers prior to deposition.

A Kaufman ion source is often used to generate the ion beam. Electrons from a
heated filament are accelerated towards an anode through a field of about 40 V so
that they can ionize argon atoms. The argon ions are then extracted and accelerated
by 500 to 1000 V to make an ion beam. The system is run at relatively low pressure, and
the erosion rate is relatively independent of the type of material in the target.

Further Reading

K. G. Donohoe, T. Turner, K. A. Jackson, Handbook of Semiconductor Technology, Vol. 2,
Processing of Semiconductors, (Ed.: K. A. Jackson), Wiley-VCH, Weinheim, Germany,
2000, 298.

S. P. Murarka, M. C. Peckerar, Electronic Materials, Academic Press, San Diego, CA,
1989, 510.

J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology, Prentice-Hall, Upper
Saddle River, NJ, 2000, 527, 619.

Problems

1. Why is sputtering not used to deposit epitaxial layers?
2. Discuss the differences between RIE, sputtering and ion milling.
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Chapter 19

Rapid Thermal Processing

Rapid thermal processing (RTP) [1, 2] is being used increasingly during semiconduc-
tor processing, in situations where RTP has an advantage over furnace annealing.

19.1

Rapid Thermal Processing

In general, a short-time anneal at a high temperature will produce an effect that is
equivalent to a longer anneal at a lower temperature. But different processes have
different activation energies, so that they depend differently on temperature. If a de-
sired process proceeds at a relatively faster rate than an unwanted process at higher
temperature, then it will be advantageous to do a higher-temperature anneal.

For example, after ion implantation, many of the dopant atoms are not on substitu-
tional sites in the lattice where they will be electrically active. And so the p/n junction is
not at the metallurgical junction. It is usually desired to make these dopant atoms
electrically active with minimal diffusive motion, and 15 s at 900 8C is often sufficient
to do this. The atoms can move the short distance necessary to find a lattice site, and
there is no long-range motion. The short anneal time must be accompanied by rapid
heating and cooling in order to limit the total time at a high temperature.

The rapid cooling in an RTP apparatus is also used to increase the doping level. At
higher temperatures the solubility of the dopants in silicon is greater, and using rapid
cooling, these high concentrations of electrically active dopants can be quenched in. A
high concentration of dopant is needed in the channel under the gate in CMOS, and
concentrations of active dopants that are significantly higher than the equilibrium
concentrations are obtained in this way.

Silicide conductors stripes and contacts are also made with RTP. For example, ti-
tanium can be deposited onto an oxide that has been patterned to expose some of the
underlying silicon. The titanium can be diffused into the exposed silicon to make
titanium silicide, using RTP. The titanium on top of the oxide does not form a sili-
cide, and can subsequently be removed by etching.

Also, as device features shrink, the distances dopants need to diffuse are shorter,
and so annealing times decrease. For furnace annealing, there is a limitation to how
rapidly the wafers can be heated without cracking, and so the furnace temperatures
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must be ramped on heating and cooling. This precludes very short annealing times.
It is possible to heat wafers much more rapidly with RTP than in a furnace, as will
be discussed below.

19.2

Rapid Thermal Processing Equipment

RTP makes use of high-powered tungsten halogen lamps to heat the wafer radiatively,
as shown schematically in Fig. 19.1. These lamps are about the size of a pencil. They
have a tungsten filament in a silica envelope. The lamps are tubular in form, and run
very hot. Tungsten evaporates from the filament, and deposits on the inside wall of
the tube. A halide, often PNBr2, picks up the tungsten from the wall and re-deposits it
back on the filament. These lamps can put out about 100 W per centimeter of length,
and can be assembled into an array that can output tens of kilowatts of optical power.

A wafer is supported under the array of heat lamps on silica pins. Heating rates up
to hundreds of degrees per second can be achieved. Wafers are heated to temperatures
in the range of 850–1050 8C, held there for times on the order of 10 to 60 s, and then
cooled equally rapidly when the lamps are turned off.

Plasma discharge lamps using krypton or xenon are also used. These are more effi-
cient and can output up to about 700 W cm�1, but they need to be ignited, and they
require a regulated DC power source.

19.3

Radiative Heating

For radiative heating, the spectral radiance for a black body is given by:

M ¼ erT4 W=cm2 ð19:1Þ

Here e is the emissivity and r = 5.6697 � 10�8 W cm�2 deg�4 is Stefan’s constant. A
black body is defined as a body with an emissivity of one, independent of wavelength.
An ideal gray body has an emissivity that is independent of wavelength, but less than
one. As illustrated in Fig. 19.2, the emissivity of a material, in general, depends on both
the wavelength and the temperature:

eðk;TÞ ¼ 1� qðk;TÞ � sðk;TÞ ð19:2Þ

Figure 19.1 Rapid thermal heating systems.
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where q is the reflectivity and s is the transmission. s is zero for an opaque material.
The power transferred by radiation from a body 1 at temperature T1 to body 2 at

temperature T2 is:

rðe1T4
1 � e2T4

2ÞA1F ð19:3Þ

where A1 is the surface area of body 1, and F is the view factor. Different parts of a
wafer experience different view factors, as illustrated in Fig. 19.3.

Figure 19.2 The emissivity of silicon depends on both wavelength and

temperature. (After Sato [3]).

Figure 19.3 Different parts of a wafer have

different view factors and heating rates.
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19.4

Temperature Measurement

The heating rate and final temperature of a sample depend on a balance between the
incident radiation energy absorbed by the sample and the energy radiated from the
sample. The radiative energy absorbed depends on the emissivity of the sample, and
the energy radiated from the sample depends on both its temperature and emissivity.
The apparent temperature as viewed by a pyrometer depends on the temperature of the
sample and on its emissivity. Increasing the emissivity of the surface will lower the
temperature of the sample by reducing the net power into the sample, but will simul-
taneously tend to increase the apparent temperature by increasing the radiation from
the sample.

A thermocouple near the wafer will not correctly indicate the temperature of the
wafer. If the thermocouple touches the wafer, it will indicate the correct temperature
only if there is good thermal contact, in which case the thermocouple is likely to act as a
local heat sink, changing the temperature locally. The thermocouple can also deposit
unwanted elements on the wafer. A non-contact thermopile can be used if its emis-
sivity can be matched to that of the wafer. A pyrometer can be used, but the direct and
indirect radiation from the heat lamps must be filtered out. Using two-color pyrom-
eters, where the emissivity at both wavelengths is known, the temperature can be
determined from the ratio of the measured intensities at the two wavelengths.
This can be used to control the temperature of the wafer to about +10 8C. Transmis-
sion through layers can result in interference effects, as illustrated in Fig. 19.4, so that
pyrometers can not be used with layered structures.

Figure 19.4 Emissivity of

a Si/SiO2/PolySi layered

structure at a wavelength

of 3.5 lm, as a function

of the thickness of the

polysilicon layer.
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Diffraction gratings have been put on the surface of wafers to measure the thermal
expansion, from which the temperature can be derived. But the grating material can
result in contamination, and it must be subsequently removed. It is also possible to
estimate the temperature from the change in size of the wafer.

The velocity of sound in a wafer depends on its temperature. Acoustic waves have
been launched into wafers through the support pins. A temperature profile can be
obtained by using several pins. This method has been used for the calibration of multi-
zone heaters.

19.5

Thermal Stress

Non-uniform temperature distributions create stresses. A sample changes size with
temperature, but if it is unconstrained, this change in size does not create a stress.
When a linear temperature gradient is imposed on a free-standing sample, the expan-
sion at one end of the sample does not create much stress on the other end of the
sample. Only a small stress arises because there must be some bending of the lattice
planes to accommodate the different expansions.

However, if a sample is constrained in length and then heated, large stresses can be
generated. If a sample of length l is heated through a temperature change DT, its
length will change by Dl = aDTl, where a is the thermal expansion coefficient. In order
to constrain such a sample from changing length, a stress r must be applied, where r
is given by the strain, Dl/l = aDT, times the appropriate elastic constant, E:

r ¼ Ea�T ð19:4Þ

If there is a radial temperature gradient on a wafer, then the outside part of the wafer
tries to constrain the inside part from changing size. And this introduces a stress of
magnitude given by Eq. 19.4. Dislocations multiply rapidly when the shear stresses on
the slip systems in the crystal reach a critical value. So it is important to minimize
radial temperature gradients on the wafer. The yield stress varies widely for different
crystals, and is temperature dependent. Silicon has a fairly high yield stress, and can
withstand much higher stresses that GaAs, for example.

In RTP, radial temperature differences are minimized by carefully controlling the
heat input so that it is very uniform across the wafer. A linear temperature gradient
through the thickness of the wafer, on the other hand, does not generate much stress.
When these conditions are met, the wafers can be heated and cooled very rapidly with
RTP.

During furnace annealing, many wafers that are held more or less vertically on a rack
are inserted into the furnace at the same time. The edges of wafers are closer to the wall
of the furnace, and so heat and cool more slowly than the center. So the furnace tem-
perature must be ramped up and down in order to heat and cool the wafers slowly, in
order to minimize the radial temperature gradients. And the larger the wafer diameter,
the slower must be the ramping of the temperature.
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Many wafers can be annealed in a furnace at the one time, so it is inherently a
cheaper process than RTP, where wafers are processed one at a time. There must
be a significant advantage in resultant properties in order to justify the extra cost
of RTP.

19.6

Laser Heating

Pulsed lasers can also be used to heat a thin layer on the surface of a sample very
rapidly, and even to melt a layer on the surface of a silicon wafer. A large pulse of
energy can be deposited at the surface in a time that is short compared to the
time it takes for the deposited heat to diffuse into the sample. But the energy in a
pulse is somewhat difficult to control precisely, so this is used only where the energy
density deposited is not critical. Alternatively, a cw laser beam can be scanned raster
scanned or spirally scanned over a surface.

Laser heating is now used in the fabrication of active matrix liquid crystal displays
(AMLCDs). Active matrix displays have a small thin-film transistor (tft) controlling
each pixel. The display is built up on a glass substrate and viewed with light trans-
mitted though the structure. The first tfts were made in amorphous silicon that
had been deposited at a low temperature. Tfts with improved properties are now
made in polysilicon. But the substrate cannot withstand the temperature needed to
deposit polysilicon, so amorphous silicon is deposited and then converted to polysi-
licon by rapidly heating only a thin layer at the surface with a laser.

References
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Problems

1. Why is the temperature of a wafer difficult to measure in RTP? What factors does
the apparent temperature depend on?

2. Why is RTP coming into increasing use in semiconductor processing?
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Chapter 20

Kinetics of First-Order Phase Transformations

20.1

General Considerations

The crystal growth process is usually reversible: the net growth rate is the difference
between the arrival rate and departure rate of atoms at the crystal surface, as is implied
by Eq. 13.33, which is based on chemical reaction rate theory. At equilibrium these two
rates are equal. When both phases are present, the crystal will grow when the interface
is below the equilibrium temperature, and it will melt or dissolve when the tempera-
ture is above the equilibrium temperature.

In general, crystals grow by the addition of atoms or molecules from the mother
phase, one at a time. The path of the atoms or molecules between the two phases
is reversible, a principle known as “microscopic reversibility”. The rate at which an
atom or molecule joins or leaves the crystal depends on the local environment of
the atom or molecule, and on how many of the nearest-neighbor lattice sites are oc-
cupied with atoms of the crystal. This determines how tightly the solid atom or mo-
lecule is bound to the crystal, and how readily an atom in the growth phase can join the
crystal. This is discussed in more detail in Section 20.8.

In growth from the vapor phase or from a solution, it is fairly obvious whether an
atom or molecule is part of the crystal or not. Surface atoms or molecules can arrive
from the vapor phase or from the solution, move around on the surface by diffusion,
and then perhaps leave the surface again. Indeed, if it were not possible to distinguish
the atoms of the crystal from those of the neighboring phase, it is difficult to imagine
how there could be a nucleation barrier to the formation of new layers, as there usually
is in vapor phase or solution growth.

In melt growth the situation is not so obvious. For metals, there is only a few per cent
difference in density between the melt and the crystal, so it is possible that there could
be a gradual transition from the crystal to the melt. But molecular dynamics simula-
tions indicate that atoms that belong to the crystal can be distinguished from those that
are part of the melt. The distinction can be made in two ways. One is using the time
trajectory of the atom. Atoms that are part of the crystal vibrate about an atom site.
Atoms that are part of the liquid migrate randomly. An individual atom at the interface
will wander randomly for a while, then perhaps join the crystal where it vibrates about
a fixed position, and then perhaps leave the crystal again to wander randomly. There is
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a clear distinction between these two modes. When an atom joins the crystal, it typi-
cally stays there for many vibrational periods, and when it is in the liquid, it typically
wanders for many vibrational periods. The vibrational mode can be clearly distin-
guished from the wandering mode.

The other method of distinguishing between solid and liquid atoms is using the
radial distribution function of the atom, which describes the locations of neighboring
atoms. The radial distribution function of solid atoms has a distinct minimum that is
not present for liquid atoms.

In molecular dynamics simulations, the atoms of the crystal at the interface create a
potential well because of their regular positions. Atoms in the liquid can fall into this
well, stay there for a while and then hop out again when they have enough energy. The
latent heat of the transformation is associated with the potential energy of the atom
falling into or hopping out of this energy well.

That the state of individual atoms at a crystal/melt interface can be distinguished is
perhaps a surprising result, since a metal crystal and its melt have such similar proper-
ties.

There has been some discussion in the literature about the importance of the ob-
servation in molecular dynamics simulations that there is density variation in a liquid
next to a plane wall. The period of the density variations is the atomic diameter, and
they extend several atomic diameters into the liquid away from the wall. However,
there is no evident dependence of the radial distribution function of the atoms on
their distance from the wall. These density variations are apparently due to minor
variations in the atom positions near the flat wall. Similar density variations are found
in the liquid next to crystal surfaces, and it has been suggested that these density waves
influence the crystallization of the liquid atoms. But it is difficult to understand how
these minor variations in position of the atoms could influence the energy or momen-
tum distributions of the atoms in such a way as to influence the rate at which the atoms
join the crystal.

Although atoms are either solid or liquid, there can be a gradual transition from the
liquid to the solid in one sense. For the simple metals and some other materials, the
interface is rough at the atomic level, as discussed in Chapter 21. There are a few
atomic layers at the interface in which there are both solid and liquid atoms. The
atoms are either solid or liquid, and these layers contain both.

So in general, we can assume that there are atoms that belong to each phase, and that
the transition between the two phases occurs atom by atom or molecule by molecule.
This statement is not meant to imply that there is no interaction between adjacent
atoms during the crystallization process.

Some crystal interfaces are smooth at the atomic level, and some are rough at the
atomic level. This distinction is the subject of the Chapter 21. The theory of the surface-
roughening transition is based on the assumption that the atoms of the crystal can be
distinguished from the atoms in the phase it is in contact with. It concludes that some
interfaces are smooth at the atomic level, and that some are rough at the atomic level,
depending in large measure on how different the properties of the two phases are. If
the density of the atoms or molecules is very different in the two phases, as it is for
vapor-phase growth or solution growth, then the interface is likely to be smooth. If the
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difference is small, as it is for a metal in contact with its melt, then the interface is likely
to be rough.

This chapter will start with a discussion of growth on rough interfaces, and then
continue with models for growth on smooth interfaces.

20.2

The Macroscopic Shape of Crystals

Some crystals grow with a crystalline morphology. They have a polyhedral shape. This
is the basis for the ancient Greek ideas about matter consisting of atoms.

As was pointed out by Gibbs [1] many years ago, the surface free energy of a macro-
scopic crystal is a very small contribution to its total free energy. The size of this con-
tribution can be seen from the relationship between the critical nucleus size and the
corresponding undercooling, Eq 15.11. For a crystal containing a few hundred atoms,
the equilibrium temperature is reduced significantly. For a crystal of micrometer di-
mensions, the equilibrium temperature will be reduced by about one degree. This
undercooling represents the amount of free energy that is available to drive a diffusion
process that could change the shape of the crystal. If the crystal is of millimeter di-
mensions, then the undercooling due to the surface free energy will be millidegrees.
The corresponding driving force will produce little diffusion over distances of a milli-
meter. Temperature fluctuations of millidegrees are present in most experimental
systems. So macroscopic crystals that have a “crystalline” shape do not owe their
shape to equilibrium surface tension, but rather to anisotropy in the growth rate.

The crystalline shape develops because the rapidly growing faces disappear leaving
the crystal bounded by the slow-growing crystal faces, as illustrated in Fig. 20.1.

Gibbs in a footnote in one of his papers pointed out that it was possible that there
could be a problem in the formation of new layers during crystal growth, but left it at
that, but we will explore this in detail. The growth rate is much more rapid on rough
interfaces than on smooth interfaces. Crystals that have all rough interfaces, such as
the metals growing from their melts, have rapid growth rates that are fairly isotropic.
The growth rate is usually limited diffusion, and so the crystals do not look like crystals.

Figure 20.1 The rapidly growing faces disappear, leaving

only the slowest-growing faces.
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20.3

General Equation for the Growth Rate of Crystals

The rate at which a first-order phase transformation proceeds was discussed in Chap-
ter 13, where it was shown that the rate of crystallization depended on the difference in
free energy between the two phases. But that discussion included only a formal re-
presentation of the crystallization process. The rate of crystallization can be expressed
as the product of four terms, one of which is the free-energy difference between the
two phases. The other three factors are: a length, a frequency, a term that depends on
the structure of the interface:

v ¼ atþfuk ð20:1Þ

The first term, a, is a distance that is related to the atomic or molecular diameter of the
growth unit. The second term, t+, is the rate at which atoms join the crystal at active
growth sites on the surface. The third term, f, depends on the roughness of the inter-
face, and is the fraction of interface sites that are active growth sites. The local free
energy or chemical potential difference between the two phases that is driving the
transformation is contained in the fourth term uk:

uk ¼ 1� exp
�G

kBT

� �
ð20:2Þ

as in Eq. 13.31. DG can be expressed as a pressure difference using Eq. 20.11, as an
undercooling using Eq. 20.7, or as a supersaturation, as discussed in Chapter 9.

Uk is the normalized net growth rate at active growth sites.
The atoms or molecules at the interface join and leave the crystal at rates that depend

only on their local environment and on the local departure from equilibrium. Their
motion depends on their individual kinetic energies and the local potentials to which
they are subject. There is no action at a distance.

Not all of the surface sites on a crystal are active growth sites. Atoms leave and join
the crystal surface at many sites, but net growth occurs only at active growth sites. The
density of active growth sites can vary widely, and is strongly temperature dependent if
the growth depends on the nucleation of new layers. This will be discussed in more
detail below. f is typically about 1/4 for a rough surface, but can be very small on a
smooth surface.

There is an ambiguity in defining the area occupied by a growth site on the interface
for different orientations of the crystal. We can get around this ambiguity by defining
the distance a to be the cube root of the atomic volume, a3 = �, and the area of a growth
site on the interface to be a2. Then if an atom is added to each growth site, the interface
will advance a distance a. The factor f is then the probability of finding an active growth
site in an area a2 of the interface. This is numerically equivalent to adding a volume �

to the crystal with each atom, and then defining f to be the density of growth sites on
the interface.

The rate at which atoms or molecules join the crystal at active growth sites, t+, de-
pends on the phase into which the crystal is growing, and on the mobility of growth
units in that phase.
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The classical theory for vapor growth was developed by Knudsen [3] and for melt
growth by Wilson [4] and Frankel [5]. In these models, the density of growth sites,
f, was not discussed. It was assumed implicitly that atoms or molecules could join
a crystal at any surface site. But these models contain the essence of the physical de-
scription of the rate at which atoms or molecules can join the crystal at active growth
sites, t+, and so they are discussed below in Section 20.5.2 and Section 20.6.

This chapter also contains a brief review of two models for growth on smooth sur-
faces: surface nucleation, Section 20.9, and growth aided by screw dislocations, Section
20.10. These are the two classical models for f, the fraction of interface sites that are
active growth sites. These models apply only to growth on smooth surfaces, and their
applicability depends on how smooth the surface is.

Reliable information about the distribution of active growth sites on a surface can be
obtained from Monte Carlo computer simulations, and detailed information about
growth rates for specific materials and orientations requires molecular dynamics mod-
eling.

20.4

Kinetic Driving Force

The kinetic driving force, DTK or DCK in Chapter 9, depends on the difference between
the free energy of the two phases at the interface. This is a local free-energy difference,
and it usually varies from point to point along the interface. This is the chemical po-
tential difference that the atoms at the interface see, and it determines their net rate of
motion of atoms across the interface.

The free energies of the two phases are illustrated in Fig. 20.2.
The difference between the free energies of the two phases can be written as:

�G ¼ ðE1 � E2Þ þ PðV1 � V2Þ � TðS1 � S2Þ ð20:3Þ

Here T is the temperature and P is the pressure. The internal energy, E, the volume, V,
and the entropy, S, of each phase is indicated by the subscript. At equilibrium, DG¼ 0,
so that:

�Eþ Pe�V� Te�S ¼ 0 ð20:4Þ

Figure 20.2 Free energies of the two phases.
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where DE ¼ E2 – E1, DV ¼ V2 – V1, and DS ¼ S2 – S1. The enthalpy difference, DH ¼
DE + PDV, which is the also known as the latent heat of the transformation, L, is:

�H ¼ L ¼ Te�S ð20:5Þ

For variations in temperature and pressure, the free-energy difference between two
phases can be written as:

�G ¼ ��P�Vþ�T�S ð20:6Þ

where DP¼ Pe – P, and DT¼ Te – T. This is the difference between the free energies of
two phase that are not in equilibrium.

At constant pressure, the free-energy difference is linearly proportional to the under-
cooling:

�G ¼ �T�S ¼ L�T

Te

ð20:7Þ

Inserting Eq. 20.7 into Eq. 13.33 suggests that the transformation rate should be lin-
early proportional to the undercooling at constant pressure for small departures from
equilibrium.

Nominal changes in pressure have little effect on the temperature of equilibrium
between condensed phases, since �V � 0. For example, Eq. 20.7 is usually used to
evaluate the free-energy difference between a crystal and its melt.

The free-energy curves in Fig. 20.2 are not precisely linear with temperature or pres-
sure, and so these relationships are not precisely linear, but they are very good approx-
imation for small departures from equilibrium.

20.5

Vapor-Phase Growth

20.5.1

Equilibrium

For equilibrium between the two phases, DG = 0, Eq. 20.6 can be combined with Eq.
20.5 to give the change in equilibrium pressure with temperature:

dPe

dTe

¼ L

Te�V
ð20:8Þ

which is known as the Clausius–Clapeyron equation. If only one of the phases is a
vapor, the volume of the vapor phase is much greater than that of a solid or li-
quid, then DV ¼ Vvapor – Vsolid � Vvapor � RT/P for an ideal gas, so Eq. 20.8 can be
written:

dPe

Pe

¼ L

R

dTe

T2
e

ð20:9Þ
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which can be integrated to give:

Pe ¼ P0
e exp � L

kTe

� �
ð20:10Þ

which describes the temperature dependence of the equilibrium vapor pressure of
many materials. This temperature dependence, given by a Boltzmann factor, is
just the fraction of atoms on the surface that have enough kinetic energy to overcome
the binding energy of the solid in order to escape into the vapor phase.

20.5.2

Kinetics of Vapor-Phase Growth

The free-energy difference between two phases is linearly proportional to the pressure
difference at constant temperature:

�G ¼ ��P�V ¼ �kT
�P

P
ð20:11Þ

where the latter approximation assumes that one of the phases is an ideal gas. Com-
bining Eq. 13.33 with Eq. 20.11 suggests that the transformation rate should be linearly
proportional to the pressure difference at constant temperature:

�R � R0

�P

P
ð20:12Þ

A simple model for the kinetics of vapor-phase growth was developed by Hertz [2] and
Knudsen [3] about 100 years ago. Knudsen’s name is still associated with an evapora-
tive source for used for vapor deposition, the Knudsen cell.

The vapor pressure of a material that is in equilibrium with a solid or liquid is called
the equilibrium vapor pressure.

When the rate at which atoms or molecules join the solid or liquid is the same as the
rate at which they are evaporating, as illustrated in Fig. 20.3, then there is equilibrium.
The rate at which atoms or molecules strike the surface of the solid or liquid depends
on the density of the atoms or molecules in the vapor phase.

Figure 20.3 Flux of atoms to and

from a surface.

20.5 Vapor-Phase Growth 265265



In the first chapter, we developed an expression for the pressure generated by atoms
hitting a piston. It is the product of the number of atoms striking the piston per second
times the momentum change when the atoms bounced off the piston:

P ¼ (change in momentum per molecule) � (number of molecules per second
striking the piston per unit area)

so that:

P ¼ ð2mvxÞJ ð20:13Þ

In Eqs. 1.3 and 1.4, nv/2 was used instead of J for the flux of atoms hitting the piston.
We assumed that the atoms did not interact with the surface of the piston, they just
bounced off it, as would be the case, say, for argon atoms hitting a stainless steel
surface. But here we are discussing growth from the vapor phase, so the surface is
the same material as the atoms or molecules. The atoms or molecules striking the
surface may bounce, or they may stick on the surface, and then evaporate at a later
time. This difference in behavior is described by the sticking coefficient, which is the
fraction of atoms that adsorb onto the surface. For various combinations of vapor-
phase species and substrates, the sticking coefficient can be anywhere between 0
and 1. The flux of atoms to the surface from the vapor is independent of the sticking
coefficient, and here we will assume that the sticking coefficient is 1.

A detailed analysis gives a more precise value than Eq. 20.13 for the relationship
between the vapor pressure and the flux of atoms hitting a surface:

P ¼
ffiffiffi
p
p

mv J ð20:14Þ

Using

v ¼
ffiffiffiffiffiffiffiffi
2kT

m

r
ð20:15Þ

gives:

Jþ ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ð20:16Þ

as in Eq. 1.28. At equilibrium, the flux of atoms to the surface is equal to the evaporat-
ing flux of atoms:

J� ¼ Peffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ð20:17Þ

For non-equilibrium conditions, the net flux of atoms to the surface can be written:

J ¼ Jþ � J� ¼ P� Peffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ð20:18Þ

So the net flux to the surface is proportional to the difference between the pressure and
the equilibrium pressure. The equilibrium vapor pressure depends on temperature, as
indicated by Eq. 20.10.
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This expression assumes that all the atoms on the surface are in equivalent posi-
tions, and that there is no nucleation barrier to the formation of new layers of the
crystal. These are good assumptions for the interaction between a liquid and a va-
por, but they are not valid, in general, for a crystal, as will be discussed in more detail
below.

20.6

Melt Growth

A crystal invariably has a lower enthalpy than its melt. The difference is latent heat of
fusion. The atoms of a crystal must have sufficient energy to leave the crystal and join
the melt, just as they must have sufficient energy to leave the crystal to join the vapor
phase, as in Eq. 20.10.

The rate at which atoms leave the solid to join the liquid at active growth sites as in
Eq. 20.1, must contain this energy difference as a Boltzmann factor:

t�0 exp � L

kT

� �
ð20:19Þ

At the equilibrium melting point, TM, the rate at which atoms join the crystal must
contain a similar factor:

tþ0 ¼ t�0 exp � L

kTM

� �
¼ t�0 exp ��S

k

� �
ð20:20Þ

�S ¼ L=TM is the entropy difference between the two phases. The normalized differ-
ence between Eq. 20.20 and 20.19 is uk in Eq. 20.1. The entropy factor on crystallization
compensates for the increase in energy when atoms leave the crystal.DS represents the
difference in order between the crystal and its melt. An atom in the crystal occupies a
volume that is very similar to the volume it will occupy in the melt. For example, the
difference in specific volume between a crystal and its melt is typically about 3% for
metals. So an atom in the crystal just needs enough energy to join the melt. It already
has enough space. But an atom in the liquid is not in the right position to join the
crystal, because of the random nature of the melt. It must be going towards a lattice
site in order to join the crystal. These two effects, one energetic, and the other geo-
metrical, compensate to make the net rate of transition equal to zero at equilibrium. Of
course there can also be a geometrical factor involved in the rate at which atoms leave
the crystal, but then the entropy factor is the ratio of these two geometrical factors.

For melt growth of metals, DS/k is typically about one, so exp(– DS/k) is about 1/3.
For small organic molecules, DS/k is typically about 6. The difference in order between
the crystal and the melt should account for one unit of this, as for a metal. The other
five units come from the rotational disorder of the melt. The molecule must be in the
right orientation in order to join the crystal. This suggests that less than 1 % of the
molecules are in the right orientation to join the crystal.
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20.6.1

Early Models for Melt Growth

The first version of the equation for the growth rate of a crystal from a liquid was
published by Wilson [4] in 1900. He estimated the rate at which atoms join the crystal
using the diffusion coefficient of the liquid, which he assumed was of the form:

D ¼ 1

6
a2tD expð�Q=kTÞ ð20:21Þ

He assumed that that ðG� �G1Þ in Eq. 13.33 was the Q in Eq. 20.21. So the Wilson
expression for the growth rate is:

v ¼ 6D

a

L�T

kTMT
ð20:22Þ

About 30 years later, Frenkel [5] expressed the growth rate in terms of the viscosity of
the liquid. The viscosity of a liquid is related to the diffusion coefficient by the
Stokes–Einstein relationship:

D ¼ kT

3pga
ð20:23Þ

The Frenkel expression for the growth rate can be written:

v � 2kT

pa2g

L�T

kTMT
ð20:24Þ

It is found experimentally that the diffusion coefficient and the reciprocal of the visc-
osity have the same temperature dependence. Experiments on glass-forming systems,
where it is relatively easy to measure the growth rate as a function of temperature,
indicate that the same activation energy also applies for crystal growth. That is, all
three have the same activation energy, Q.

But the prefactor is not correctly predicted by these equations.
The entropy factor of Eq. 20.20 should be included in both Eqs. 20.22 and 20.24.
In addition, the diffusion jump distance in the liquid is not the atomic diameter, a,

as suggested by Eq. 20.21. An atom in the liquid diffuses by a series of small motions
as discussed in Chapter 2. In Section 2.2.1, a distinction was made between the mean
free path, k, of an atom in a liquid, and �, which is the average distance which an atom
moves during a diffusive motion.

In some cases, a rearrangement of the configuration and positions of other atoms
in the liquid is required in order for the an atom or molecule to join the crystal. In
these cases, it is the temperature dependent diffusion jump distance, �, which deter-
mines the distance an atom or molecule must move in order to join the crystal. Re-
placing a2 with �2 in Eq. 20.21, and adding the factor f as well as entropy term from Eq.
20.20 to Eq. 20.22 results in a modified version of the Wilson expression for the growth
rate:
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v ¼ 6aD

�2
f exp ��S

k

� �
L�T

kTMT
ð20:25Þ

Similar modifications can be made to the Frenkel expression for the growth rate,
Eq. 20.24.

This is the appropriate expression for the crystallization rate of glass-forming ma-
terials, where the mobility of the atoms limits the growth rate. At large undercooling,
the temperature dependence of the growth rate is dominated by the temperature de-
pendence of the mobility and so the growth rate follows an Arrhenius behavior. This
equation also agrees with the results of molecular dynamics simulations of the crystal-
lization of silicon, as discussed in the next section.

20.6.2

Melt Growth Rates

The linear relationship between the growth rate and the undercooling is often written
in the simple form:

v ¼ l�T ð20:26Þ

where l is called the kinetic coefficient. For a typical metal growing from the melt,

v � 50 �T cm=sec ¼ 0:5�T m=sec ð20:27Þ

Metal crystals grow very rapidly at small very small interface undercoolings. The
growth rate is usually limited by diffusive processes. For pure metals, the growth
rate is limited by heat flow, that is, by how fast the latent heat can diffuse away
from the interface.

It is important to remember that growth processes take place only at the interface.
The atoms at the interface are subject to the conditions at the interface: the local tem-
perature, the local composition, the local curvature of the interface. The thermal fields
and compositional fields in the sample as a whole influence the local conditions at the
interface, but the kinetic processes at the interface on the atomic scale depend only on
the local conditions there. The atoms at the interface respond only to their immediate
environment.

20.7

Molecular Dynamics Studies of Melt Crystallization Kinetics

The diffusion coefficients as determined from molecular dynamics (MD) simulations
for liquid argon, using a Lennard-Jones (LJ) potential, and for silicon, using the Stil-
linger–Weber (SW) potential are shown in Fig. 2.2. The diffusion processes in both
liquids are very similar. The activation energies for diffusion scale with the melting
points of the two materials. Both liquids are very similar, but the crystals that form are
quite different.
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For the LJ potential, the force that any two atoms exert on each other depends only on
the distance between them, and not on the location of any other atoms. This is called a
pair potential. With this potential, the atoms crystallize with a face centered cubic
structure, which is a close-packed structure.

The Stillinger–Weber [6] potential is a three-body potential developed especially for
silicon. Each atom in crystalline silicon has four nearest neighbors, and the angle
between the bonds to the nearest neighbors is important. And so the potential de-
pends on not only the distance from each neighboring atom, but also on the angle
between each pair of neighboring atoms. The potential provides a good approximation
for the structure and properties of liquid silicon, and, below the melting point, a crystal
forms with the diamond cubic structure, as the potential was designed to do.

The crystallization behavior of the two is quite different.
MD simulations using the SW potential [7] are shown in Fig. 20.4. The solid line is

the Wilson–Frenkel expression, Eq. 20.25, fitted to the data using the activation energy
derived from the diffusion data for liquid silicon. This correctly describes the compu-
ter simulation data. This curve is similar to the experimental data for the crystallization
of silica, Fig. 9.1.

MD simulations using the L-J potential [8] are shown in Fig. 20.5.
The open circles are the simulations results. The lower solid line is the Wil-

son–Frenkel growth rate, using the activation energy for liquid diffusion from simula-
tion. It is obvious that the data are not described by the Wilson–Frenkel equation. The
growth is not thermally activated.

This result suggests that an atom can move the small distance to join the crystal
without interference from other atoms. In this case, it is the mean free time, s, which
is the time required for the atom to traverse its mean free path, k, which determines
the growth rate.

Figure 20.4 Molecular dynamics growth rates for (100) silicon using

the Stillinger–Weber potential.
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An atom can traverse its mean free path to join the crystal at the average thermal
velocity, (3kT/m)1/2. t+ in Eq. 20.1 is then the reciprocal of the mean free time between
collisions in the liquid,

tþ ¼ 1=s ¼ v=k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kT=m

p
=k ð20:28Þ

The growth rate can be written:

v ¼ a

k

ffiffiffiffiffiffiffiffi
3kT

m

r
exp ��S

R

� �
1� exp � L�T

kTMT

� �� �
f ð20:29Þ

The line through the data in Fig. 20.5 was calculated using Eq. 20.29, with k ¼ 0.1a,
and f ¼ 0.25.

This implies that the atoms run unobstructed from their positions in the liquid at
the interface into the neighboring solid site at the interface, with the average thermal
velocity of the atoms in the liquid.

There are potential wells formed at the interface by the regular positions of the solid
atoms at the interface. In the simulations, a liquid atom falls into one of these wells,
stays there for a while vibrating about an average position, and then hops and moves
randomly in the liquid for a while until it falls back into the same, or a different, well.

This growth rate does not depend on the rate at which atoms can move around in the
liquid by diffusion. Unlike the diffusion jump distance, �, the mean free path, k, is not
strongly temperature dependent. This is the appropriate expression for the solidifica-
tion rate of metal crystals, and also for the crystallization of the inert gases. These
materials can crystallize at very low temperatures, and they do not form glasses.

For silicon, and for molecular materials in general, there is an activation energy
associated with rearrangement of the liquid structure. This activation energy deter-
mines the temperature dependence of the diffusion coefficient in the liquid, the visc-
osity of the liquid, and the crystallization rate. This is unlike the results from simula-

Figure 20.5 Molecular dynamics

growth rates for (100) using a

Lennard-Jones potential.
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tions with the LJ potential, where the atoms are essentially spheres. In this case, the
activation energy for liquid diffusion and viscosity are the same, but the crystallization
process is not thermally activated.

These results suggest that materials can be divided into two groups based on their
crystallization behavior:

– One group contains materials for which no rearrangement of the liquid structure is
required for any individual atom to join the crystal. The crystallization is not ther-
mally activated. These materials have not been made into glasses.

– The other group contains materials where there must be some structural rearran-
gement of the liquid around an atom or molecule before it can join the crystal. The
structural rearrangement process is thermally activated with the same activation
energy as liquid diffusion and viscosity. These materials will not crystallize at very
low temperatures, so that they can, in principle, be made into glasses.

In the discussion above, the number of active surface sites, f, has been assumed to be
constant. This is usually the case for metals and the inert gases. However, for many
materials, surface nucleation is required for growth, in which case f is strongly tem-
perature dependent. This will be discussed in detail in Chapter 21.

20.8

The Kossel–Stranski Model

Stranski [9] suggested that the reason crystals grow with a crystalline shape is because
there is a barrier to the formation of new layers on the closest-packed faces. He sug-
gested that the barrier exists because the rate at which individual atoms leave the sur-
face of a crystal depends on how tightly they are bound to the surface. The surface of a
simple cubic crystal where the surface atoms have various numbers of nearest neigh-
bors in the crystal is illustrated in Fig. 20.6.

Stranski assumed that the strength of binding of an atom to the surface depends on
its number of nearest neighbors. He applied this to a simple cubic crystal, which is also
known as a Kossel crystal [10], and so this is now known as the Kossel–Stranski model.
This is, of course, a simple approximation to how the binding depends on the number
of neighbors, but this model does contain the essence of an explanation of why there is

Figure 20.6 The rate at which an atom leaves the surface of

a crystal depends on how many nearest neighbors it has.
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a strong anisotropy in the growth rate of some crystals. This model is still the basis for
modern statistical mechanical models of crystal growth.

In this model, it is assumed that the rate at which atoms join the crystal is inde-
pendent of the local configuration, and that the rate at which an atom leaves the crystal
depends on how many of its nearest-neighbor sites are occupied by atoms of the crys-
tal. The normalized net rate at which an atom joins and leaves the crystal is:

1� exp
L

kTM

� nf
kT

� �
ð20:30Þ

Here f is the bond energy, given by f = 2L/Z, where Z is the number of nearest-
neighbor sites in the crystal. n is the actual number of nearest neighbors of the
atom at the surface of the crystal. Because each bond is shared between two atoms
in the bulk of the crystal, the binding energy per atom, L is equal to Zf/2.

An important concept introduced by Stranski is the repeatable step site, which is also
called a “kink site” because it is the site at a kink in a surface step. It is a site, as can be
seen in Fig. 20.2, where an atom has half of its nearest neighbors, n = Z/2. An atom in
the kink site breaks these Z/2 bonds when it leaves the surface, so the energy for it to
leave is exactly the average latent heat per atom. When an atom joins or leaves a kink
site, the repeatable step site moves along the step, so the free energy associated with
the surface configuration does not change. Except for edge effects, the entire crystal
can be built up by the motion of these kink sites.

At equilibrium, the rate of arrival of atoms at a kink site is the same as the rate of
departure, as can be seen from the Eq. 20.30.

A general expression for the growth rate was written in Eq. 20.1 as:

v ¼ atþf uk ð20:31Þ

f is the fraction of surface sites that are active growth sites. All active growth site are
kink sites. But on very rough surfaces, not all of the kink sites are active growth sites.
Forgrowthonaroughcrystalsurface, thefactor f ismoreorlessaconstant,approximately
1/4, a value that depends on the configuration of a rough surface. A surface cannot be
constructed that has only repeatable step sites, and computer modeling suggests that
the value of 1/4 for f is about the best that can be done. The surface can be made rough-
er, but the effective number of growth sites does not increase much.

If we knew the site distribution function for the surface, that is, the probability of an
atom on the surface having n nearest neighbors, we could replace the terms fuK in Eq.
20.31 with a sum of the probability for each type of site, times the net rate of addition of
atoms at that type as in Eq. 20.30. The site distribution function can be estimated at
equilibrium, but it is best determined by computer simulation.

20.9

Nucleation of Layers

The Kossel–Stranski model implies that when the surface of a crystal is essentially
atomically flat, with only a few adatoms in the next atomic layer, there is a kinetic
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barrier to the formation of new layers surface. After his success with developing nu-
cleation theory, Becker applied it to evaluate the rate at which a circular disc of atoms
will form on an atomically flat surface. Following the model for the nucleation of a
three-dimensional spherical cluster of atoms, the free energy of a monolayer disc
on a surface, as illustrated in Fig. 20.7, can be written as:

�Gr ¼ �apr2�GV þ a2prr ð20:32Þ

where a is the height of the disc, r is the radius of the disk, DGv is the change in free
energy per unit volume to add atoms to the crystal, and r is the surface free energy per
unit area.

Becker used the surface free energy of a flat surface for the edge free energy of the
disc. We will see later that this is wrong. This equation for surface nucleation is similar
to the change in free energy to form a sphere, except it is for a two-dimensional disc on
a surface. The critical size for such a disc is given by:

1

r�
¼ �GV

r
¼ L�T

rTM

ð20:33Þ

and the rate of nucleation of new layers on the surface is given by:

I ¼ I0 exp ��Gr�

kT

� �
ð20:34Þ

On a smooth surface, the factor f, the density of active growth sites in Eq. 20.31, de-
pends the density of growth sites provided by the nucleation process.

Equation 20.34 is very similar to the expression for three-dimensional nucleation,
Eq. 15.6, and so the undercooling required for nucleation is similar in both cases. The
undercooling should be on the order of 20 % of the melting temperature in order to get
a reasonable nucleation rate. This implies that there should be a major nucleation
barrier to the formation of new layers on a crystal. But crystals can grow at very small
undercoolings.

Figure 20.8 shows the crystallization rate of Salol as a function of temperature. Salol
can be quenched into the glassy state readily, because its crystallization rate is so slow.
The growth rate at small undercooling exhibits nucleation-limited behavior: the
growth rate comes into the melting point horizontally.

The growth rate decreases at lower temperatures because the mobility of the
atoms, as indicated by the diffusion coefficient as in Eq. 20.22, or by the viscosity,
as in Eq. 20.24, decreases as the temperature drops, but the growth rate is not linear
with undercooling at small growth rates.

Figure 20.7 Disc-shaped nucleus of a new layer

on a crystal surface.
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Figure 20.8 indicates an asymmetry in the crystallization rate and the melting rate at
the melting point. On melting, the crystals become rounded as steps move in from the
edge of the crystal. The melting rate is not limited by the nucleation of new layers.
Experiments on the growth of voids internally in a crystal have shown the opposite
effect on the morphology when the crystal is growing or shrinking. The growing
void is faceted because the nucleation of steps is necessary, whereas when the void
is shrinking, it becomes rounded.

20.10

Growth on Screw Dislocations

Charles Frank (see [11]) suggested that defects in the crystal structure could help to
form new layers, so that a nucleation process was not necessary for growth. He pointed
out that a screw dislocation that ended at a surface could provide a continuous step on a
surface for growth. He suggested that the surface step would wind up into a spiral, as
illustrated in Fig. 20.9.

The minimum radius of curvature on the spiral should be the critical radius as in Eq.
20.33, which would result in the spacing between the arms of the spiral also being
equal to the critical radius. Thus the step density on the surface will be proportional
to the undercooling. This means that the factor f is proportional to DT, and since uK is
also proportional to DT at small undercoolings, Frank predicted that the growth rate of
a crystal should be proportional to DT2.

Dislocations are not necessary for crystal growth: large dislocation-free crystals of
silicon are grown every day.

Figure 20.8 The growth rate of Salol crystals as a function of temperature [11].
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However, growth on defects can be important when there is a barrier to the forma-
tion of new layers. When the rate at which new layers nucleate is very slow, then
growth can occur at the growth sites provided by defects. A growth rate that is propor-
tional to DT2, as Frank predicted is often observed at small undercoolings on surfaces
where there is a nucleation barrier to growth. At larger undercoolings, the nucleation
rate increases so that the nucleation of new layers takes over the growth process. An
example is shown in Fig. 20.10, for the crystallization of lithium disilicate [12]. The
reduced growth rate is the actual growth rate, times the viscosity, divided by uk. Multi-
plying by the viscosity removes the temperature dependence of the mobility, and di-
viding by uk removes the temperature dependence due to the difference in free en-
ergies of the two phases. So this is a plot of the density of active growth sites, the
factor f in Eq. 20.1, as a function of undercooling. At small undercooling, as in the
inset, the active growth site density increases linearly with undercooling, up to an

Figure 20.9 Spiral step on a crystal surface

generated by a dislocation.

Figure 20.10 Reduced growth rate (active growth site density) for lithium

disilicate [12]. At small undercoolings the defect density determines the density

of active growth sites, and at large undercooling surface nucleation takes over.
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undercooling of about 100 8C, in accordance with the screw dislocation model. The
density of active growth sites is then relatively constant from about 100 8C undercool-
ing to 400 8C undercooling. At still larger undercooling, surface nucleation takes over,
and the growth rate increases dramatically.

The defect density varies from crystal to crystal, and the nucleation rate depends on
the crystal face as well as the crystal structure, as will be discussed below, so the mag-
nitude of the rates, and the cross-over point from defect-dominated growth to surface-
nucleation growth varies widely.

The barrier to the formation of new layers is not as large as that calculated by Becker,
and there is no barrier to the formation of new layers on a rough surface. Becker was
wrong to assume that the free energy of the edge of a step is the same as the specific
free energy of a flat surface of the crystal. The edge of a step is much rougher than a
crystal surface, and the entropy associated with this roughness decreases the free en-
ergy of the step.

In order to treat this in more detail we will examine the equilibrium configuration of
a surface in the next chapter, and we will do this using the Kossel–Stranski model,
which is illustrated in Fig.20.6.

20.11

The Fluctuation Dissipation Theorem

This section is included to demonstrate the applicability of the fluctuation dissipation
theorem to crystal growth. The kinetic coefficient can be determined by measuring the
fluctuations of the interface.

20.11.1

Determination of the Kinetic Coefficient

The measurement of fluctuations in the interface position at equilibrium can be used
to determine both the kinetic coefficient and the surface tension [13]. This correlation
makes use of the Onsager fluctuation dissipation theorem [14], which can be stated as
follows.

The rate at which a system, which has been displaced from equilibrium, returns to equili-
brium is the same as the rate at which fluctuations in the system decay at equilibrium.

How the kinetic coefficient can be obtained by studying fluctuations at equilibrium
[16] is outlined below.

We will start by examining the rate of decay of fluctuations in a system that is part
solid and part liquid at equilibrium. An example is shown in Fig. 20.11, where the data
are taken from a Monte Carlo simulation [15].

The number of solid atoms fluctuates with time, and we will denote the number of
solid atoms at any given time, t, as NS(t). Similarly, the number of liquid atoms at time t
is NL(t). The total number of atoms, N, is fixed: N = NS(t) + NL(t). Over time, there is an
average number of solid atoms, which we will denote <NS>. The number of solid

20.11 The Fluctuation Dissipation Theorem 277277



atoms fluctuates about this average value, and we will define the instantaneous depar-
ture from the average value as DNS(t) = NS(t) – <NS>. The decay rate of fluctuations
can be determined using a time correlation function:

CðtÞ ¼ h�NSðtÞ ��NSð0Þi
hN2

Sð0Þi
ð20:35Þ

The carets indicate average values.
The time correlation function is evaluated by designating some arbitrary time to be t

= 0. The number of solid atoms at that time is recorded, and then the number of solid
atoms is recorded as a function of time after this initial time. In order to do this, there
must be a method to determine the number of solid atoms as a function of time, as
there is, for example, in Monte Carlo simulation data in Fig. 20.11. For molecular
dynamics simulations, a solid atom can be identified by its immediate surround-
ings, such as the positions of its nearest neighbors.

The product DNS(t).DNS(0) can then be calculated for each time, t. Then another
time is picked as t = 0, and the process is repeated. Then the values of
DNS(t).DNS(0) for each starting time are averaged. If DN(0) is positive, then at short
times, DNS(t) is also likely to be positive, and if DNS(0) is negative, then at short times,
DNS(t) is also likely to be negative, but the product DNS(t).DNS(0) will be positive in
either case.

For t = 0, the time correlation function, C(0) = 1. At some long time later, the number
of atoms in the solid will be randomly greater than or less than the average, and so the
product DNS(t).DNS(0) will be randomly positive and negative, with an average value of
0. So C(t) = 0 for large t. The time-correlation function should have the form:

CðtÞ ¼ expð�t=sÞ ð20:36Þ

If C(t) decays exponentially as indicated, then the time constant, s, can be determined
from the data. If C(t) does not decay exponentially with time, then this analysis will not
work. The time correlation function is shown in Fig 20.12 for the data in Fig. 20.11.
The slope of the solid line is 1/s.

Figure 20.11 Number of solid atoms in a Monte Carlo simulation of a crystal

at equilibrium with its melt in a temperature gradient.
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The fluctuations in the number of solid atoms in Fig. 20.11 seems random, but there
is a time constant buried in the fluctuations that can be extracted using time correla-
tions, as shown in Fig. 20.12.

In order for this scheme to work, there must be a fixed average number of solid
atoms, and the number of solid atoms fluctuates about this average. If the interface
is unconstrained, the number of solid atoms can wander randomly. So there must be a
restoring force that drives the number of solid atoms back to the average value. A
temperature gradient, G = dT/dz, was imposed on the system in Fig. 20.11, to provide
such a restoring force. The location of the melting-point isotherm then defines the
equilibrium position of the interface, which in turn defines the average number of
solid atoms.

T ¼ TM þ Gz ð20:37Þ

We could equally well have a constant volume system, and use the pressure generated
by the volume change to define the equilibrium number of solid atoms. Or we could
have an adiabatic system, and use the temperature change caused by the latent heat to
establish the equilibrium number of solid atoms.

The time constant, s, is the rate at which fluctuations in the system decay, which is
half of the Onsager relationship. We must next determine the rate at which our system
will return to equilibrium when it is displaced from equilibrium.

If the number of solid atoms changes by DNS, then the solid/liquid interface is
displaced by an average distance Dz:

�z ¼ �

A
�NS ð20:38Þ

where � is the atomic volume, and A is the area of the interface.

Figure 20.12 Time correlation function, C(t), for the data shown in Fig. 20.11.

The line is an exponential fit to the data for short times.
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Due to the change in position, the average temperature of the interface changes by
GDz:

TM � T ¼ �T ¼ ��

A
G�NS ð20:39Þ

The rate of motion of the interface, v, depends on the rate at which atoms join or leave
the solid:

v ¼ d�z

dt
¼ �

A

d�NS

dt
ð20:40Þ

Assuming that the growth rate of the crystal depends linearly on the undercooling, we
can write:

v ¼ l�T ð20:41Þ

where l is the kinetic coefficient. If the crystal growth rate does not depend linearly on
the growth rate, then this analysis will not work. Combining Eqs. 20.40 and 20.41:

d�NS

dt
¼ A

�
l�T ð20:42Þ

Replacing DT with the value in Eq. 20.39:

d�NS

dt
¼ �lG�NS ð20:43Þ

The time dependence of the interface displacement is thus:

�NSðtÞ ¼ �NSð0Þ expð�lGtÞ ð20:44Þ

This gives the rate at which the system will return to equilibrium when it is displaced
from equilibrium, which is the other half of the Onsager relationship.

Onsager’s fluctuation dissipation theorem states that the value of time constant, s,
derived from the time-correlation function should be the same as the time constant, 1/
lG, in the expression for the rate at which the interface returns to equilibrium when it
is displaced from its equilibrium position in the temperature gradient. And so, the
kinetic coefficient, l, can be calculated from value of s, which was obtained from
the time correlation function.

l ¼ 1

sG
ð20:45Þ

In the above analysis, it was assumed that the interface velocity is linear with under-
cooling. A different analysis would be needed if this was not the case.

The fluctuations in pressure in a constant volume system could be monitored to give
the number of solid atoms, or the temperature in an adiabatic system could be mon-
itored to give the number of solid atoms. In any case, the total number of atoms must
be large enough so that statistically significant fluctuations are observed, and small
enough so that the fluctuations are not averaged out.

Figure 21.13 shows the kinetic coefficient determined in this way from Monte Carlo
simulations of the (100) face of a simple cubic crystal.
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20.11.2

Experimental Determination of Surface Tension

The surface tension can be determined by measuring the time-correlation function for
the intensity of laser light scattered from a surface or an interface. The light from a
laser will scatter from surface fluctuations. The light that is scattered at some particular
angle has been diffracted by fluctuations in the surface having a specific wavelength
that depends on the angle of incidence, on the angle of the detector, and on the
wavelength of the light. The rate of decay of a sinusoidal fluctuation of the surface
shape depends on the wavelength of the fluctuation, the surface tension and the
kinetic coefficient. If the rate at which a displacement of the interface decays is linear
with its amplitude, and the kinetic coefficient is known, then the surface tension can
be calculated from the time correlation of the diffracted intensity. This will work for a
liquid/vapor or a liquid/liquid interface. It will also work for a liquid/solid interface, if
the interface is rough, so that it behaves like a fluid/fluid interface. This is a neat
experiment: the surface tension can be determined by light scattering.
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Problems

1. For L/kTM = 5, what is the normalized net departure rate as given by Eq. 20.30
for n = 1, 2, 3, 4, 5, for a crystal structure with Z = 6.

2. If the unit of time in Fig. 20.12 corresponds to 3 ps, and the temperature gradient
in the simulation was 100 degrees per micrometer, what is the kinetic coefficient?
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Chapter 21

The Surface-Roughening Transition

21.1

Surface Roughness

Some surfaces are smooth on the atomic scale, and others are rough. This has a dra-
matic influence on the crystal growth process. The surfaces that are rough on an atom-
ic scale usually have isotropic properties, and so are rounded on a microscopic scale.
The surfaces that are smooth on an atomic scale have anisotropic properties, and form
microscopic or macroscopic facets. The transition between these two modes is known
as the surface-roughening transition, and it is related to the order–disorder transition
in two dimensions. The nature of this transition has been studied using the Ising
model. Interfaces that are smooth on the atomic scale and rounded on the micro-
scopic scale are shown in Figs. 11.2, 12.4, 26.1. Figure 21.1 is a photograph of the
growth front of a Salol crystal, which has a smooth interface at the atomic scale
and is faceted on a microscopic scale, growing under similar conditions.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3

Figure 21.1 Faceted growth of a Salol crystal.

283283



21.2

The Ising Model

It turns out that the mathematics of the Kossel–Stranski model [1, 2] (see Fig. 20.6) is
identical to the mathematics of the model that was originally developed by Ising for the
ferromagnetic Curie point. This model is simple in principle, but becomes very com-
plex in detail. It is a very important model that has been extensively studied in statis-
tical mechanics.

The Ising model for a ferromagnet assumes that the spin on each atom points either
up or down.

It is assumed that the spins interact only with neighboring spins. There is one inter-
action energy if the two spins are parallel, and a different interaction if the two spins
are anti-parallel. This model predicts that all the spins will align at a low temperature,
as shown on the left in Fig. 21.2. The nearest-neighbor interactions, which are very
short range, produce long-range order. At high temperatures, when the thermal en-
ergy is large compared to the interaction energy, the spins are random, as illustrated on
the right in Fig. 21.2. There is a second-order phase transition between these two re-
gimes, at a temperature called the critical point, which for the ferromagnet is the Curie
temperature.

However, the mathematics for this model is identical to that for an ordering alloy,
where there is one interaction between atoms of the same kind, and a different inter-
action between dissimilar atoms. At low temperatures, there is an ordered state, where

Figure 21.2 Ordered and

disordered states for a ferro-

magnet.

Figure 21.3 Ordered and

disorder states in an ordering

alloy.
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the occupancy of sites alternates in a regular pattern, and there is a critical temperature
above which the occupancy of sites is random, as illustrated in Fig. 21.3. The mathe-
matics of the Ising model applies equally well to ordering in an alloy.

The same mathematical model applies to the Kossel–Stranski model. An atom has
one interaction energy with an occupied neighboring crystalline site, and a different
interaction energy with neighboring site which is not occupied by an atom of the
crystal. This is just like the Ising system, where there is one interaction if the neigh-
boring atom has the same spin, and a different interaction energy if it does not.

The same mathematics applies to each of these cases, and so they are said to belong
to the Ising Universality Class.

21.3

Cooperative Processes

The phenomena we are discussing, where there are long-range ordering effects that
are due to local interactions, are known as cooperative processes. The fact that many
different systems can be described by the same mathematics has led to the defining of
universality classes. Systems in the same universality class have similar behavior in the
vicinity of their critical points [3]. The behaviors of systems near their critical points are
known as critical phenomena. The behavior of some property of the system, such as
the order parameter, can be described by an expression of the form:

Tc � T

Tc

� �b

ð21:1Þ

Here TC is the critical temperature, and b is known as a critical exponent. The critical
exponents can be calculated or estimated for a variety of system parameters, such as
the order parameter, the sound velocity, the density, the viscosity, the diffusion coeffi-
cient, the coherence length, and so on. Relationships between the critical exponents of
several of these system parameters have been found.

Members of the same universality class all have the same critical exponents. It is
surprising what the members of a particular universality class do and do not have in
common.

The critical temperature depends on the specific material system and on the details
of the interactions between the atoms, but the critical exponent,

b is independent of:

details of the local interactions
lattice type
anisotropy of bond strengths
second-nearest-neighbor interactions

(these can be folded into the first-neighbor interactions)
whether there is a lattice.
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b depends on:

number of components in the order parameter
dimensionality of the system.

For example, the critical exponent, b, for the order parameter in the Ising system is
0.324. The experimental critical exponent for the order parameter in b-brass, a copper-
zinc alloy is 0.324. The experimental critical exponent for the difference in particle
density between the liquid and vapor phases along the co-existence curve approaching
the critical point in argon is 0.324. These are both in the Ising universality class and
so have the same critical exponents.

Some of the universality classes are:

two-dimensional Ising
three-dimensional Ising
x-y model, where the interaction energy depends on the angle between the spins:

the superfluid transition in liquid 3He is in this universality class
spin-1 Ising model that has four spin states: binary alloy solidification is in this

universality class
spin glass model, which has nearest-neighbor interactions of random magnitudes.

At first it seems strange that the critical exponents should be so universal. But look at
the list that b does not depend on and compare it to the way we apply nucleation theory.
The standard nucleation theory assumes that there are clusters of the new phase in a
parent phase. The equations are applied to the nucleation of a crystal in a liquid, a
precipitate in a crystal, or a liquid in a vapor, etc., independent of all the things
that critical exponents do not depend on. Nucleation theory does not predict melting
points, and the Ising model does not predict critical temperatures.

Some people have objected to using the Ising model to analyze crystallization, be-
cause the liquid atoms are assumed to be on lattice sites. But universality says that this
is not an issue. Similarly, the structure of the liquid never comes up in writing the
equations that describe the nucleation of a crystal in a liquid. In applying the Ising
model to crystal growth, it is assumed that there is a lattice in order to enable the
analysis, but that does not affect the universality of the result.

It is worth emphasizing that the critical temperature of a member of a universality
class cannot be predicted from an analysis of the cooperative behavior, because in the
past it has been assumed that the critical point for the surface-roughening temperature
in the Ising model can be used to predict the surface-roughening transition for real
crystals. The Ising model describes the behavior of the system in the vicinity of the
critical point, which is similar for all members of the same universality class. But, for
example, the Curie temperature of a ferromagnetic material cannot be predicted from
the Ising model. Nor can the roughening transition of the surface of any particular
crystal be predicted from the Kossel–Stranski model.

The Ising model is a simple model that provides insight into crystallization pro-
cesses, but there is a problem. Exact analytical solutions for the three-dimensional
Ising model do not exist, even for equilibrium. And we would like to model crystal-
lization kinetics, which requires more than knowledge of the equilibrium properties.
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Onsager, who developed the Fluctuation Dissipation Theorem discussed in Chapter
20, also obtained an exact solution for the Ising model in two dimensions. He received
the Nobel prize for his work. This model was applied to the roughening of a crystal
surface by Burton, Cabrerra, and Frank [4]. There are many approximate solutions for
the Ising model, which provide significant insights. For example, Kenneth Wilson, at
Cornell, received the Nobel prize for developing Renormalization Group Theory. This
is a method for analyzing groups of atoms in the Ising system, enumerating the prop-
erties of the groups and their interactions with other groups of atoms, and doing this
self-consistently so as to provide an expansion scheme in terms of cluster size for the
properties of the system. But exact analytical solutions for the three-dimensional Ising
model do not exist. In fact, it was recently reported in Nature that the three-dimen-
sional Ising model belongs to a class of problems that are insoluble. The author con-
cluded that there are some things we will never know. Perhaps he doesn’t believe in
computer modeling, because a great deal is known about the Ising model from com-
puter simulations.

Monte Carlo computer simulations can be readily performed on the Ising system [5].
And then the cluster distributions and the other behavior obtained from the computer
simulations can be scaled and used to describe the cluster distributions and the be-
havior of real systems. This seems to be difficult for people who believe that true
understanding comes only from equations to accept. They are happy to use computers
to solve their equations, but unwilling to accept computer simulations as an alternative
to equations.

The Ising model contains nucleation behavior as one limit. For example, in a mag-
netized ferromagnet at a low temperature, all the spins are aligned. In a demagnetized
sample, all the spins are locally aligned, but there are magnetic domains of the oppo-
site alignment, so there is no net magnetization of the sample. If a magnetic field is
applied to a magnetized sample in a direction that requires the spins to flip, then there
will be a nucleation barrier to the formation of the new magnetic domains. At a low
temperature, there will be a critical size for new domains, which depends on the
strength of the applied magnetic field. The formation of domains of reverse magne-
tization can be described by the standard equations for nucleation. But at temperatures
approaching the Curie temperature, many flipped spins occur spontaneously, and
small sub-critical regions of flipped spins will increase in size and number. These
will interact and merge. Close to the Curie temperature, standard nucleation theory
does not apply to the formation of a domain of reverse magnetization, because the
density of flipped spins is much too high. But the Ising model does incorporate
this behavior, even though it is so difficult to describe analytically.

21.4

Monte Carlo Simulations of Crystallization

In these simulations, which are based on the Kossel–Stranski model, atoms arrive
randomly at sites on the surface at some specified rate, and atoms leave the surface
at a rate that is determined by a probability factor that depends on the number of
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adjacent crystalline atoms. If the departure probability is bigger than a random num-
ber, then the atom leaves, and if not, it does not. The arrival probability, P+, and de-
parture probability, P�, can be written as:

Pþ ¼ tþ

P� ¼ tþ exp
L

kTM

� nf
kT

� �
ð21:2Þ

Here L is the latent heat of the transformation, and f is the bond energy. These two are
related by L = Zf/2, where Z is the number of nearest-neighbor sites in the lattice. n is
the actual number of nearest neighbors of the surface atom. At a repeatable step site
where n = Z/2, the arrival rate is equal to the departure rate at equilibrium. In the
computer, atoms join and leave the crystal according to these simple rules and so
the computer simulation provides a statistical analysis of this model. The statistics
are never exact, since the simulated systems are finite in size and simulation time.
But the atoms form clusters and nucleate new layers, and so on, just as we suppose
happens in the real world. When the bond energy is comparable to kT then there are
many adsorbed atoms on the surface, there is no nucleation barrier to the formation of
new layers. When the bond energy is large compared to kT, a single atom on the
surface has a high probability of leaving the surface, and so there are few on the sur-
face. The formation of nuclei on such a surface is difficult. Many atoms have to get
together on the surface to form a cluster of critical size and the growth of new layers
involves the lateral spreading of these clusters. In this regime, growth occurs by nu-
cleation and the motion of steps on the surface.

21.5

Equilibrium Surface Structure

21.5.1

Thermodynamic Model for Surface Roughness

The density of growth sites on the surface of a crystal depends above all on the rough-
ness of the crystal surface. This is an intrinsic property of the surface at equilibrium
that depends on the nature of the two phases separated by the interface and on the
atomic structure of the surface.

This is illustrated in Fig. 21.4, and can be analyzed using a simple two-dimensional
model for the equilibrium structure of a crystal surface or interface [6].

Figure 21.4 There is an equilibrium

density of adatoms on a crystal surface.
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The change in the free energy, DFS, of an initially flat surface containing N sites due
to the random addition of Na atoms can be written as :

�GS ¼ �Nag0f� Nag1

Na

N

f
2
þ NaT�Sþ kT ln

N!

Na!ðN� Na!Þ

� �
ð21:3Þ

where go and g1 are the number of nearest neighbor sites in the substrate layer and in
the surface layer respectively, as illustrated in Fig. 21.5, so that 2go + g1 = Z, where Z is
the total number of nearest neighbors. DS is the entropy change associated with the
transformation.

The first term in Eq.21.3 is the decrease in energy due to the bonds formed with the
substrate. The second term is the interaction with neighboring atoms on the surface,
which are assumed to be randomly distributed. The third term is the increase in en-
tropy associated with adding the atoms to the crystal, and the last term is the entropy
associated with the random distribution of atoms on the surface.

For T=TM, defining Na/N = h, and using the Stirling expansion for the factorials
gives:

�GS

NkTM

¼ �h 2g0

Z

L

kTM

� g1

Z
h2 L

kTM

þ h
L

kTM

þ h ln hþ ð1� hÞ lnð1� hÞ ð21:4Þ

which can be written as:

�GS

NkTM

¼ aðh� h2Þ þ h ln hþ ð1� hÞ lnð1� hÞ ð21:5Þ

Here

a ¼ L

kTM

g1

Z
¼ �S

k

g1

Z
ð21:6Þ

which is known as the Jackson a-factor. Equation 21.5 is plotted in Fig. 21.6.
The equilibrium population of adatoms is defined by the minima in these plots,

which is given by:

d

dh

�GS

NkeTM

� �
¼ 0 ¼ að1� 2hÞ þ ln h� lnð1� hÞ

or

h

1� h
¼ exp½�að1� 2hÞ� ð21:7Þ

Figure 21.5 g0 is the number of

nearest-neighbor sites in the

layer below, and g1 is the number

of nearest-neighbor sites in the

same layer as the adatom.
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For large a, there is a minimum at approximately:

h � expð�aÞ ð21:8Þ

which implies that the surface has few adatoms, and so is fairly smooth on an atomic
scale.

For small a, there is a minimum at h = 1/2, which is a surface whose sites are half-
filled with adatoms, which suggests that the surface is rough. Indeed, it is likely to be
rougher than the one atomic layer of roughness permitted in the model.

For large a, there is a maximum at h = 1/2, and the transition between the maximum
and minimum defines a critical value of a, which occurs when the curvature changes
sign at h = 1/2.

Figure 21.6 Plot of DFS/NkTM as a function of h for various values of a.
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d2

dh2

�GS

nkTM

� �
¼ �2aþ 1

h
þ 1

1� h

¼ �2aþ 4; for h ¼ 1

2
ð21:9Þ

So the critical value of a is aC = 2.
The free energy has two minima for a > 2, and only one, at h = 1/2 for a < 2.

21.5.2

Application of Surface Roughening to Materials

This value for the surface-roughening transition, aC = 2, is in very good agreement
with the observed behavior of melt-growing crystals. That is, for surfaces with a small
a-factor, the surface is rough and the crystals can grow readily without surface nuclea-
tion. Surfaces with a large a-factor are smooth, and there is a nucleation barrier to the
growth of each layer.

The a-factor has two components, one of which depends on the change in entropy
of the transformation, DS = L/TM, and the other, g1/Z, on the geometry of the crystal
face. The factor g1/Z is largest for the closest-packed planes and smaller for the less
closely-packed planes of the same crystal.

For materials with a small entropy change on melting, all the crystal faces will be
rough. These materials will exhibit relatively isotropic growth, and will grow rapidly at
small interface undercoolings. For materials with a large entropy change on melting,
the closest-packed faces will be smooth and so there is a nucleation barrier to growth
on those faces. The less-closely packed planes of the same crystal will be rough and

Figure 21.7 There are many growth sites on both

rough surfaces (top), few growth sites on the low

index edge (bottom left), but many growth sites on

the low index edge (bottom right) because of the

topology of the lattice.
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there will be no nucleation barrier to growth on them. This is illustrated for a two-
dimensional square lattice in Fig. 21.7.

The density of growth sites is large for the rough surfaces, and it is also large for the
(11) edge shown on the lower right in Fig. 21.7. The growth rate will be very rapid and
relatively isotropic for low entropy change, because the growth-site density is similar
for both faces. But the growth rate will be much slower on the (10) edge than on the
(11) edge for high entropy change, because of the large difference in growth-site den-
sity on the two edges.

Table 21.1 presents the value of the factor g1/Z for three faces of the face-centered-
cubic structure.

Materials with large entropy changes exhibit very anisotropic growth rates, and the
closest-packed planes require significant undercooling for reasonable growth rates.

Table 21.2 contains a list of entropies of fusion for various classes of materials.
The a-factor for a particular face of a crystal is the product of the appropriate num-

bers from the two tables, 21.1 and 21.2. One is characteristic of the material, and the
other depends on the growth direction. The class of materials with low entropy change
includes all the metals growing from the melt, which are said to “solidify” because
their growth rates are rapid and isotropic. In general, the higher the a-factor, the
slower and the more anisotropic is the growth rate. This model correctly predicts
the morphology and the general characteristics of growth from the melt. It also de-
scribes the characteristics of growth from the vapor phase, but the roughening transi-
tion occurs at a different value of a for vapor growth.

For molecules or atoms that behave like spheres in the liquid state, the entropy
associated with crystallization involves only a change from the randomness of liquid
to the ordered structure of the solid, as for the metals in Table 21.2. Materials such as
this usually freeze into one of the three close-packed crystal structures: face-centered
cubic, body-centered cubic or close-packed hexagonal. The entropy change for each of
these materials is very close to 1 in reduced units, that is, in units of the gas constant, R,
if you are a chemist, or in units of Boltzmann’s constant, k, if you are a physicist.

Table 21.1 g1/Z for face-centered cubic crystals.

(111) 1/2

(100) 1/3

(110) 1/6

Table 21.2 Entropy change on crystallization.

Metals from the melt 1

Si, Ge, Sb, Ga from the melt 3

Many organic compounds 6

Metals from the vapor 10

Complex molecules 20

Polymers >100
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For more open structures such as ice or silicon and some of the semimetals such
as bismuth or gallium, the entropy of fusion is in the range of 3 to 4. These materials
have some directional bonding in the crystal. For most organic materials, the mole-
cules are free to rotate in the liquid state but have a specific orientation in the crystal.
The entropy of fusion for many of these materials is about 6. This means that 5 units of
entropy are associated with the change rotational order and only 1 unit of entropy is
associated with the disorder on going from the liquid to the crystal state. One way to
think about the origin of the entropy is that only some small fraction of the molecules
in the liquid will be in the right orientation to join the crystal. The improperly oriented
molecules cannot join the crystal until they rotate. Thus only a fraction of the mole-
cules contribute to the arrival rate of atoms at the crystal at any one time. But this effect
is not present in the rate at which molecules leave the crystal, because a molecule can
join the liquid in any orientation. This asymmetry in the rates lowers the equilibrium
temperature, so that the entropy associated with the transformation is higher.

Most molecular compounds are randomly oriented in the liquid and their orienta-
tion is ordered in the crystalline phase. There are two classes of material that are ex-
ceptions to this. In one of these, the molecules are free to rotate in the crystal that
forms from the liquid. These materials have entropies of fusion similar that are simi-
lar to the metals. They crystallize into the highly symmetrical face centered cubic struc-
ture, and undergo a solid-state phase tranformation at a lower temperature, where the
molecules align to form a crystal strucure with a much lower symmetry that is depen-
dent on the shape of the molecule. They behave like the metals during crystallization,
so they have been used as transparent analogues to study the crystallization charas-
teristics of metals. There are photogtraphs of the growth morphology of these materi-
als throughout this book.

The other class of materials in which the molecules do not align during crystalliza-
tion are the liquid crystals. In these materials, the molecules are already aligned in the
liquid state. There is a transformation above the melting point in the liquid phase,
above which the molecules are not aligned.

The transition between faceted and non-faceted growth forms for melt growth sys-
tems occurs at a specific value of the entropy change per molecule. In some materials
the effective molecular weight is uncertain. In sulfur, for example, using latent heat
per atom, the entropy of fusion is small. However, in liquid sulfur at its melting point,
the atoms form eight-membered rings. At higher temperature in the liquid phase, the
sulfur atoms polymerize into linear chains. Associated with this structural change in
the liquid is an increase in the viscosity of the liquid above the melting point by two
orders of magnitude. Using the molecular weight of an eight-membered ring, sulfur
has an entropy change typical of the molecular materials that its crystal growth habit
resembles. The state of aggregation is important because large molecules, in general,
have a larger entropy of fusion per mol than small molecules, and this difference is
reflected in their crystallization behavior. Formally, this enters the alpha factor
through the latent heat, which is in units of energy per mol, so that the latent heat
per gram translates into a larger latent heat per mol if the molecular weight is lar-
ger. Sulfur can also be crystallized from the polymeric state of the liquid phase, in
which case its growth morphology resembles that of other polymers. In phosphorus
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the same issue arises, but in this case, the state of aggregation in the liquid is not
known. The growth morphology suggests a state of aggregation in liquid phosphorus
similar to that of the eight-membered ring in sulphur.

Ice is an interesting case. The entropy change for freezing of water is 2.63R. The
crystal structure of ice is hexagonal, but there is asymmetry in the bond lengths so that
it is difficult to asses the geometrical factor, n1/Z, exactly, but it is about 3/4 for both the
basal plane and the growth directions in the basal plane. Ice crystals growing from the
melt form facets on the the basal plane and grow much more rapidly in the basal plane.
At a few degrees below zero Celcius, ice crystals will grow as sheets one millimeter or
so thick, while the dendrites grow several inches across in the basal plane. The growth
rate of the dendrites in pure water is limited primarily by the diffusion of latent heat
from the dendrite tips. The water–ice transition has an alpha factor closer to two than
any other pure material, and so is perhaps a test of the critical value of alpha for melt
growth. Most materials have alpha factors for their closest-packed faces that are not
near the critical value.

21.5.3

Snow Flakes

Snow flakes provide a very interesting example of the role of the surface-roughening
transition in crystal growth. Ice crystals growing in the atmosphere exhibit a wide
variety of growth morphologies. The growth morphology of a snow flake depends
on both the temperature and the water vapor content of the air. The growth of the
snow flake depends on the diffusion of water molecules through the atmosphere
to the crystal, as well as on the intrinsic growth characteristics. Some ice crystals
grow as needles, elongated perpendicular to the basal plane of the ice structure. A
more common form is a disc. The disc shape occurs when the basal plane is
smooth, so that the growth rate normal to the basal plane is very slow, as it is for
the growth of ice dendrites in undercooled water. Growth in the directions in the
basal plane depends sensitively on the local environment. The planes perpendicular
to the basal plane can be either rough or smooth, depending on the temperature and
on the amount of water in the air. When the conditions are such that these planes are
smooth, the growth rate is limited by the growth kinetics, and the morphology is an
hexagonal disc. When these planes are rough, the growth kinetics are relatively rapid,
so the growth rate is limited by diffusion of water molecules to the snow flake. The
growth morphology in this case is a disc with dendritic growth in the basal plane. Of
course the growth rate of an ice dendrite in undercooled water, which is limited by
thermal diffusion, is much more rapid that the growth of a snow flake that is limited by
the diffusion of water molecules in air.

A snow flake can experience several different local environments as it falls, and so it
can switch back and forth between these two growth modes. This gives rise to the great
variety of snow flakes that are observed, and to the adage that no two snow flakes are
alike. The morphologies of some disc-shaped snow flakes are shown in Fig. 21.8.
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In the top row are a dendritic and an hexagonal snow flake. The other snow flakes
have various morphologies. Some, such as the two on the left in the center row, started
as faceted discs, and then became dendritic. The snow flake second from the left in the
bottom row started as a dendrite and later grew in faceted mode, so the ends of the
dendrite arms have become faceted. Others appear to have switched growth modes
more frequently.

The disc is not the only morphologies of ice crystals that have grown from the vapor
phase in air. As mentioned above, there are also needle-shaped crystals, and there are
changes in relative growth rates for different orientations with temperature. All of the
complex details of how of ice crystals grow in air have not yet been sorted out.

21.5.4

Rate-Theory Analysis of Surface Roughness

The roughness of the interface can also be analyzed by comparing the rates at which
atoms join and leave the crystal. The surface coverage was analyzed in Chapter 16 for
the Langmuir model, where it was assumed that the adsorbed atoms at the interface
interact only with the substrate, and do not interact with other adsorbed atoms. For
crystal growth, this is not a good assumption. The lateral interactions of the atoms
must be taken into account. The rate at which atoms join the crystal can be written
as in Eq 16.2 for Langmuir adsorption:

Rþ ¼ ðN� NaÞtþ ð21:10Þ

where N is the number of surface sites, and Na is the number of adatoms. It is assumed
that atoms can arrive only at the N–Na unoccupied sites. Langmuir assumed that the
rate at which atoms leave the surface was independent of their environment, but here

Figure 21.8 Snow flakes. (From Bentley and Humphreys [7]).
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we assume that the rate at which an atom leaves the surface depends on how many
nearest neighbors it has.

The rate at which an atom with n nearest neighbors leaves the surface is:

tþ exp
L

kTM

� nf
kT

� �
ð21:11Þ

as in Eq. 20.30. Here n is the number of occupied nearest-neighbor sites, which is the
number of bonds that are broken when the atom leaves. These equations imply that the
rates of arrival and departure are equal at a repeatable step site, where n = Z/2.

The overall rate at which atoms leave the surface can be written as:

R� ¼ Nat
þ exp

L

kTM

� hnif
kT

� �
ð21:12Þ

where<n> is the average number of nearest neighbors of the atoms on the surface. At
equilibrium the overall rates at which atoms join and leave the surface are equal.
Equating Eqs. 21.10 and 21.12 gives:

Na

N� Na

¼ h

1� h
¼ exp � L

kTM

þ hni2L

ZkTM

� �
ð21:13Þ

where h = Na/N, and f has been replaced with 2L/Z. To reproduce the result of the
previous analysis, we again assume that the atoms on the surface are randomly dis-
tributed, so that the average number of nearest neighbors <n> depends on the aver-
age adatom density, and is given by:

hni ¼ g0 þ g1h ð21:14Þ

Using 2go + g1 = Z, the exponent in Eq. 21.13 can be written as:

� L

kTM

Z� 2hni
Z

� �
¼ � L

kTM

g1

Z
ð1� 2hÞ

� �
ð21:15Þ

Using

a ¼ ðL=kTMÞðg1=ZÞ ð21:16Þ

Equation 21.15 can be written:

h

1� h
¼ exp½�að1� 2hÞ� ð21:17Þ

which is the previous result found in Eq. 21.7. Equilibrating the rates at which atoms
join and leave the surface gives the equilibrium condition directly, which corresponds
to the minima in Fig. 21.6.

The analysis of surface roughening based on rate equations gives the same result as
that derived using equilibrium thermodynamic methods. The rate analysis is the basis
for Monte Carlo modeling of crystal growth processes, and so Monte Carlo modeling
contains not only the basic properties of the system at equilibrium, including the sur-
face-roughening transition, but it also provides information about non-equilibrium
configurations of the interface and about growth rates.
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21.5.5

Surface Roughness in the Ising Model

The analysis of surface roughening presented above is based on an approximate one-
level model of the interface. A more rigorous analysis of the interface, based on a three-
dimensional Ising model that allows for a multi-layer transition between the two
phases, results in a different value for the location of the transition [8].

It is usual in the statistical mechanics literature to indicate critical roughening
temperatures as calculated based on the Ising model, which implies a simple cubic
lattice. It has become usual to compare surface-roughening temperatures with the
theoretical value for the (100) face of this model. The reduced critical surface-rough-
ening temperature is expressed as kTR/f, where f is the bond energy of the crystal,
given by 2L/Z. This critical roughening temperature is exhibited in the right-hand
column of Table 21.3. For the (100) face of a simple cubic crystal, kTR/f is equal
to 2/aC. This notation provides an analogy with bulk melting: the surface is smooth
(ordered) below the critical-roughening temperature, and rough (disordered) above it.
On the other hand, this notation tends to obscure the dependence of the surface rough-
ness on the difference in entropy between the two phases. Furthermore, the numerical
value of the roughening transition expressed this way depends on both the crystal
structure and on the orientation of the interface.

The value for the 2D theoretical critical point presented in the table is from the exact
solution for a 2D Ising crystal (square lattice) obtained by Onsager. It is quite close to
the value for the roughening transition that is obtained for the three-dimensional Ising
model, even though the surface roughness can extend over many layers of atoms in
the latter case. This is because the transition is strongly dependent on what happens in
the central layer of atoms in the multi-layer interface.

Also exhibited in Table 21.3 are the experimentally observed locations of the surface-
roughening transition for melt growth and for vapor growth. Since only interfaces that
are smooth can form macroscopic facets, the formation of macroscopic facets during
growth can be used to locate the surface-roughening transition. The transition for melt
growth was determined by comparing the growth characteristics of a large number of
different materials. The critical roughening transition for melt growth happens to
coincide with the value predicted by the two-dimensional Bragg–Williams model pre-
sented above.

Table 21.3 Surface-roughening transition.

aC kTR/

ff

Roughening transition (theory) 3.2 0.62

2D Critical point (theory) 3.5 0.57

2D Critical point (Bragg–Wiliams model) 2.0 1.0

Melt growth (expt) 2.0 1.0

Vapor growth (expt) 8.0 0.25
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The surface-roughening transition for melt growth is significantly higher than the
theoretical value for the Ising model. This difference is attributed to the presence of
other liquid atoms that interfere with the formation of small solid clusters on the
surface, forcing the onset of surface roughening to higher temperatures. For vapor
growth systems, the transition is significantly lower than the theoretical value.
This difference is believed to arise because the surface atoms are less tightly bound
than atoms in the bulk. This promotes surface roughening so that it occurs at a lower
temperature. For the vapor case, surface melting, that is, the formation of a layer of
mobile atoms, can also occur.

For vapor-phase growth, the surface-roughening transition can be observed using
vapor transport in a closed tube with a fixed temperature difference between the hot
and cold ends. The tube is then held at various average temperatures, and the growth
morphology is observed. At low temperatures the crystals are faceted and at high tem-
peratures they are rounded. The transition between these two regimes occurs in a very
narrow temperature interval. Observations have been made on a large variety of ma-
terials. In these experiments, the equilibrium temperature between the crystal and the
vapor changes with the average temperature of the system. Since the entropy differ-
ence between the two phases depends on the equilibrium temperature, and the loca-
tion of the roughening transition depends on the entropy change across the interface,
growth from a vapor can be taken through the surface roughening temperature to
exhibit growth both above and below the transition.

Doing the same for melt growth would require extremely large pressures in order to
change the equilibrium temperature significantly, since modest variations in pressure
do not significantly change the melting point. The change in equilibrium temperature
with pressure depends on the change in volume for the transformation, which is very
large for vaporization, but only a few per cent for melting. The change in melting point
with pressure is sufficiently small so that a unique value for each material under usual
laboratory conditions is tabulated in handbooks. So for melt growth there is a unique
entropy of fusion for each material at normal pressures, and a corresponding a-factor
for each crystal face.

Although the mathematical model for the alpha factor presented above is a relatively
crude approximation, it does indicate the correct physics, and it provides a valuable
rule-of-thumb for predicting the surface roughness of various faces of various materi-
als for melt growth.

21.6

Computer Simulations

The above analyses tell the basic story of surface roughening, but there are many more
details that have been worked out primarily using Monte Carlo computer modeling,
but also mathematical analyses of approximations to the Ising model. A full analytical
treatment of a multi-layer interface has been done for one special case, but there is not
a general solution. Multilevel cluster expansion models have been used to demonstrate
that there is an analytical singularity in the thermodynamic properties of the surface of
an Ising crystal at the surface-roughening transition, but it is a very weak singularity.
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The surface tension and most of the other properties of the surface are continuous
through this transition. Figure 21.9 is a plot of the surface roughness [9], which is
defined as the number of unsatisfied bonds on the surface.

The surface roughness increases as the alpha factor decreases. The surface rough-
ness is similar for the three-dimensional Bragg–Williams (0th-order cluster expan-
sion), for the 1st-order cluster expansion and for Monte Carlo modeling. 8exp(–a) pro-
vides a reasonable approximation. As the surface becomes rougher, the roughness is
spread over more atomic layers. But in all the models, nothing much happens to the
surface roughness at the roughening transition. The surface roughness increases con-
tinuously through the roughening transition.

This is not true for the free energy of a step on the surface. The free energy of a step
decreases as the surface-roughening transition is approached, and it goes to zero at the
surface-roughening transition [10] as shown in Fig. 21.10.

As the surface-roughening transition is approached, a step becomes increasingly
jagged. There is a major contribution to the free energy of the step from the entropy
associated with this jaggedness. At and above the surface-roughening transition, the
surface is so rough that steps are lost in the roughness [10], as illustrated in Fig. 21.11.

It has been shown that above the surface-roughening transition, the interface is like
a fluid/fluid interface [11]; the interface ignores the crystal lattice. On the rough side of

Figure 21.9 Surface roughness versus 1/a.
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Figure 21.10 Step free energy

versus 1/a.

Figure 21.11 Configuration of surfaces below

and above the roughening transition, which is at 0.62.
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the surface-roughening transition, there is no difficulty in forming new layers. There
is no barrier to continuous growth, and so the growth rate is linear with undercooling.
On the smooth side of the surface-roughening transition, steps on the surface have a
finite free energy, and so the growth rate depends on the rate of formation of new
layers. This is illustrated in Fig. 21.12, where growth rates from Monte Carlo compu-
ter simulation studies are shown. In Fig. 21.12 the critical surface-roughening transi-
tion is at 1.0. The curve labeled 1.08 is just on the rough side of the transition, and the
growth rate is linear with undercooling. The other curves are for smooth surfaces.
They come into the origin with zero slope [11], and further from the roughening tran-
sition they are flatter and more “nucleation-like”.

As suggested by Fig. 21.12, it has been proved as an exact result, using linear re-
sponse theory, that the growth rate on rough interfaces is linear with undercool-
ing, whereas the growth rate on smooth surfaces approaches equilibrium with
zero slope. And so there is a discontinuity in the kinetic properties of the interface
at the roughening transition.

The free energy of a step depends on the proximity of the surface-roughening transi-
tion, and so the difficulty in nucleating new layers increases with the distance from the
roughening transition. The growth rate for crystals with large entropies of transforma-
tion is highly anisotropic.

21.6.1

Determination of the Kinetic Coefficient

The kinetic coefficient can be determined using the fluctuation dissipation theorem as
described in Chapter 20. Figure 21.13 shows the kinetic coefficient determined in this
way from Monte Carlo simulations of the (100) face of a simple cubic crystal.

The interface was at equilibrium in a temperature gradient. The interface fluctua-
tions were analyzed using time correlations, and the kinetic coefficient was deter-
mined from Eq. 20.45.

Figure 21.12 Monte Carlo

computer simulations results

for the growth rate versus un-

dercooling for various values

of ac/a.
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The theoretical surface-roughening transition for this interface is at a = 3.2. There is
a sharp change in the kinetic coefficient at the surface-roughening transition. Below
the surface-roughening transition, the growth rate is linear with undercooling, and so
a valid kinetic coefficient is obtained. The growth rate is not linear with undercooling
above the surface-roughening transition, and so the data do not correspond to a kinetic
coefficient. Instead, the time correlation function is picking up very rapid changes of
adatom density on the smooth surface.

As illustrated in Figs. 21.9 and 21.11 many of the properties of the surface are con-
tinuous through the surface-roughening transition. It is difficult to locate the transi-
tion in these figures. The surface tension is continuous through the transition. But the
kinetics of the interface motion are discontinuous at the surface-roughening transition
as demonstrated dramatically by Fig. 20.13.

The break in the data in Fig. 20.13 corresponds to the transition from the region
where the growth rate is linear with undercooling in Fig. 21.12, to where the growth
rate approaches the melting point with zero slope.

21.6.2

Simulations of Silicon Growth

As an example of this anisotropy, Monte Carlo simulations have been carried out for
silicon, with the roughening transition in the simulations scaled to the roughening
transition for silicon [12]. The entropy change for melt growth of silicon, DS/R =
3.6, so the a-factor for (111) is 2.7, and for (100) is 1.8, and it is lower for all the other
faces. The growth on the (111) face in the Monte Carlo simulations is stepwise for a
range of interface temperatures as is shown in Fig. 21.14. MD simulations have not
been carried out on a surface which is large enough to exhibit this step-wise growth.

Figure 21.13 Kinetic coefficient as a function of the a-factor from Monte Carlo

simulations of the (100) face of a simple cubic crystal [12].
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These data exhibit nucleation limited behavior, as is evident from the irregular rate
of addition of new layers. When the growth rate is plotted versus 1/DT, as in Fig. 21.15,
the data fall on a straight line, which also indicates nucleation limited growth.

Adapting the data in Fig. 21.15 to a multiple-nucleation model, which explicitly takes
into account the interaction between nuclei on the surface, to extrapolate to the size of a
silicon boule, gives the growth rate data shown in Fig. 21.16. The Monte Carlo growth
rate for the (100) orientation was scaled to v = 0.12 DT, a value derived from experiment
and from molecular dynamics modeling. The difference between the growth rates for
the two faces comes from the Monte Carlo modeling.

Figure 21.14 Layers added versus time for Monte Carlo growth on silicon (111).

Figure 21.15 Growth rate from the data in Fig. 21.14 plotted against1/DT.
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Typical Czochralski growth rates for silicon are between 5� 10�5 and 10�4 m s�1. At
these growth rates the undercooling on the (100) face, as well as for all the other growth
orientations except for (111), is less than a millidegree. So these interfaces will be
essentially at the melting-point isotherm. The undercooling where the steps are nu-
cleating on the (111) face is about 5 degrees. This is in accord with experiment and
explains the large facet observed on silicon (111) during growth. The undercooling on
the two faces for the same growth rate differs by about four orders of magnitude. By
fitting the growth rate to a nucleation model, the edge free energy of the steps on the
(111) face is only about 10% of the free energy of the (111) face.

21.7

Growth Morphologies

For a comparison of growth morphologies on smooth and rough surfaces, Figs. 11.2,
12.4, and 26.1 show the growth morphologies on rough interfaces, where there is no
indication of faceting. This can be compared with Fig. 21.17 that shows a dendritic type
of growth in tertiary butyl alcohol, for which DS/R is about 3. The dendrite morphology
exhibits facets on its side branches.

Figure 21.18 shows faceted growth of benzil, for which DS/R is about 6. This ma-
terial will not grow dendritically. The morphology is always faceted. The anisotropy in
the growth rate suppresses the instabilities that result in side branching.

Figure 21.16 Growth rate versus undercooling for silicon (100) and (111).
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Figure 21.17 Faceted dendritic

growth in tertiary butyl alcohol.

Figure 21.18 Faceted

growth in benzil.
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21.8

Kinetic Roughening

Experimentally, the growth rate is one of the most anisotropic properties of a crystal.
As can be seen in Fig. 21.12, at small undercoolings there can be very large anisotro-
pies in the growth rate. At small undercoolings, some faces grow and others do not: the
difference in growth rates can be orders of magnitude. On very slowly growing faces,
defects can significantly promote growth. However, at large undercoolings, when the
growth rate lifts off the horizontal axis in Fig. 21.12, then the anisotropy in the growth
rate is much less. In this regime, a surface that was smooth at equilibrium becomes
rough. This has been termed kinetic roughening, which is illustrated in Fig. 21.19.

This results in a transition in the growth morphology from faceted or spiky crystals
at smaller undercoolings to isotropic growth at large undercoolings, as illustrated in
Fig. 21.20.

Figure 21.19 Kinetic roughening (From [5]). a) small undercooling, b) large undercooling.

Figure 21.20 DDT growing at various temperatures (From [14]).
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At the lower temperatures, the growth rate has become isotropic.
Because the mobility of molecules in the melt decreases at the lower temperatures,

the growth rate is much slower at the lower temperatures. But the normalized differ-
ence between the rates at which molecules join and leave the crystal increases with
undercooling.

The growth forms shown in the bottom right photograph of Fig. 21.20 are known as
spherulites, and it is the common form of crystallization in polymers. The compact
morphology illustrated is observed in the growth of minerals such as hematite and
malachite, as well as in the iron carbide crystals that grow in the liquid ahead of
the interface in nodular cast iron.

Spherulitic growth in polybutene-1 is shown in Fig 21.21.
The spherulite starts from a single seed. But the result is a spherical polycrystalline

mass growing with the same fast-growing orientation pointing radially outward every-
where. Initially, the crystal grows and spreads out like a sheaf of wheat in its fast
growth direction, due to defect generation. And then faster-growing orientations nu-
cleate on the slow-growing lateral faces, ultimately resulting in the spherulite.

The growth of large defect-free crystals such as silicon depends on the process being
close to the equilibrium condition, so that atoms are joining and leaving the crystal
much more rapidly than the net growth rate. The atoms that join the crystal in wrong
positions are even more likely to leave, and so, there are many opportunities for defects
to be repaired. At large undercooling, far from equilibrium, the defects are much less
likely to be repaired.

If the growth is at very large undercooling because the nucleation of new layers is
difficult, then defects are not only likely to get built into the crystal, but when they do,
the crystal grows faster. At fast enough growth rates there can be a transition to an
amorphous solid. But before that stage, a fine-grained, highly defective, polycrystal will
grow, as in the low-temperature growth of DDT in Fig 21.20. Polysilicon has a struc-
ture like this, with the scale of the grain structure depending on the substrate tem-
perature during deposition.

Figure 21.21 Spherulitic growth in polybutene-1.
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The surface-roughening transition plays the same role in the deposition of thin films
as in growth from the melt. At high substrate temperatures, the equilibrium config-
uration of the surface is rough. At lower substrate temperatures, the surface becomes
smooth, and deposition proceeds by the nucleation and spreading of layers. At very low
temperatures, the rate of desorption decreases, and a significant fraction of the inci-
dent atoms stick. The critical nucleus size decreases, and the surface becomes kine-
tically rough.

21.9

Polymer Crystallization

Some polymers can crystallize, some can not. Among the ones that can, the degree of
crystallization, the size of the crystals and the structure of the crystals depend upon a
number of parameters, such as whether the crystallization is from the melt or solution,
the temperature and time under which the crystallization occurs, the concentration of
the solution, and whether any stresses are present to direct the crystallization (me-
chanical, electrical or magnetic).

Many polymers crystallize by a chain-folding process. The polymer molecule folds
back and forth along itself to join the crystal. The size of the crystal is a small fraction of
the length of the polymer molecule.

Polymers with highly regular structures are more likely to crystallize than irregular
or highly branched structures. In dilute solution, a polymer molecule will tend to chain
fold and most of an individual chain can be found in an individual crystal. From the
melt, the chains are densely packed, and instead of neat chain folding, bits of chains
from different molecules tend to randomly line up to form a crystallite with the rest of
the chains extending into the amorphous region, or joining other crystallites.

The degree of crystallization varies widely for different polymers. For example, lin-
ear polyethylene can be nearly 95 % crystalline, while highly branched polyethylene
will only be about 30 % crystalline. Polypropylene is usually less than 80 % crystal-
line, PET is usually less than 60%, and nylon 6,6 is usually less than 50 %.

Polymers such as polyethylene have a highly regular structure, highly flexible chains
and are easily crystallized. Materials like PET (polyethylene terephthalate) have a ben-
zene ring in the polymer backbone that makes the chain quite stiff and so the melting
point of the crystal is high (270 8C) An additional important factor in polymer crystal-
lization is intermolecular forces between adjacent chains. Polar molecules have rela-
tively strong intermolecular forces, and hydrogen bonds formed between chains can
be very strong. These can be seen in materials such as polyamides, polyurethanes and
polyureas.

Polymers with large side groups such as polystyrene or even polypropylene can
crystallize, but the side groups are so bulky that the polymer chains cannot lie flat
in the standard planar zig-zag configuration. The chains relieve the strain by twisting
and the polymer crystallizes into a helix formation. Many bio-polymers crystallize in
this helical structure and also have hydrogen bonding that greatly strengthens the
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helix. For example, DNA forms a two-stranded helix and collagen forms a three-
stranded helix.

These cylindrical rods can then pack into a hexagonal parallel array for a super crys-
talline structure. Polymers such as nylons can form hydrogen bonds between flat pla-
nar zig-zag sheets. The C=O from one chain is attracted to the N–H of another.

In dilute solution, polymers tend to form larger, more perfect crystals with the
chains folded to fit into the crystal thickness. In polyethylene the crystallite thickness
is nearly proportional to the crystallization temperature. At 60 8C the thickness is about
90 A, at 100 8C about 150 A and at 130 8C nearly 200 A.

Another format seen in polymers crystallized from the melt is called a spherulite, as
illustrated in Fig. 21.21. These supermolecular structures are built from chain-folded
laminar ribbons that branch as the spherical structure grows, forming a sphere with
constant density with diameter. Spherulites can be hundreds of micrometers in dia-
meter.

The oligomeric components of the polymeric material as well as impurities tend to
segregate to the inter-crystalline spaces, which remain amorphous.
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Problems

1. Discuss the surface-roughening transition and its importance for crystal growth
processes.

2. Discuss the similarities and differences between the Knudsen description of vapor
deposition, the Langmuir description of adsorption on a surface and the Ising
model description of the equilibrium roughening of a surface.

3. Solid-on-Solid (SOS) Simulation
Start with a set of 50 adjacent columns, each of height 25 units.
Add units to columns randomly at a rate k+.
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Remove units from the top of the columns randomly using a probability that
depends on the number of nearest neighbors of the unit:

k� ¼ kþexp((2�n)f/kT)

where n is the number of nearest-neighbor sites that are occupied.
Continue until the configuration stops changing significantly.
The information needed for each column can be stored as its height.
Use periodic boundary conditions for the two end columns.
k+ must be chosen so that k� is always � 1.
Show the final distribution of column heights for f/kT = 2.5, 5, and 10.

This scheme is known as the solid-on-solid (SOS) approximation, since atoms can
arrive only on top of other atoms. Overhanging configurations are not permitted,
as they are in the Ising model. If the interface is not too rough, the number of
overhanging configurations is usually small, and so this is usually a quite good
approximation to an Ising model interface.
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Chapter 22

Alloys: Thermodynamics and Kinetics

The thermodynamic properties of alloys are discussed in many texts. A few of these are
listed at the end of this chapter [1–4]. There are also compilations of phase diagrams,
such as [5]. In this chapter, alloys will be discussed in terms of both their thermody-
namic properties and in terms of the kinetics of their crystallization.

22.1

Crystallization of Alloys

For the crystallization of an alloy, separate equations, such as Eq. 13.31 and 13.32 can
be written for the rate at which each species makes the transition between the two
phases. The chemical potentials, li, of each species, i, should be used instead of
the free-energy difference as in Eq. 13.31 or 13.32. The rate at which species i leaves
the leaves the liquid to join the crystal can be written:

vþi ¼ v0þ
i exp

lL
i

kT

� �
ð22:1Þ

and the rate at which it leaves the crystal to join the liquid:

v�i ¼ v0�
i exp

lS
i

kT

� �
ð22:2Þ

For an alloy phase with ideal entropy of mixing, the chemical potential is given by:

li ¼ l0
i þ kT ln Ci ð22:3Þ

where li
0¼Hi – TSi is the chemical potential for pure i, and Ci is the concentration of

species i.
For non-ideal alloys, the same form can be retained, but the concentration is re-

placed by the “activity” to account for the departures from ideality, although depar-
tures from ideality are much more common in the energy rather than in the entropy
of an alloy.

Kinetic Processes. Kenneth A. Jackson
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The rate at which atoms of species i leave the liquid to join the crystal can thus be
written as:

vþi ¼ CL
i v0þ

i exp
l0L

i

kT

� �
ð22:4Þ

And similarly for the transition from crystal to liquid.
This is the same as the assumptions made in chemical reaction rate theory, that the

rate of a reaction is proportional to the concentration of the reactants. The strange
looking concentration term in Eq. 22.3 implies simply that the transformation rate
is proportional to the concentration. The concentrations in this case are the concen-
trations at the interface.

The general form for the growth rate of a crystal, Eq. 20.1, will apply for alloys, but
with an individual equation written for each species. The uK in Eq. 20.1 becomes:

ui
k ¼ CL

i � CS
i exp

�l0
i

kT

� �
ð22:5Þ

where Dli
0 ¼ li

0S – li
0L.

When the chemical potentials of Eq. 22.3 are inserted into the standard expression
for the free energy of a binary alloy, the kTlnC terms result in the standard entropy of
mixing term:

G ¼ CAl
0
A þ CBl

0
B þ kTðCA ln CA þ CB ln CBÞ ð22:6Þ

So the entropy of mixing term, strange as it looks, has a very simple physical inter-
pretation. It derives from the assumption that the rate a component reacts or makes a
transition is proportional to its concentration.

In terms of the general form for the growth rate of a crystal, Eq 20.1, vi
0 incorporates

t+, the rate at which atoms join the crystal at active growth sites, and f, the fraction of
interface sites that are active growth sites:

v0
i ¼ ðatþf Þi ð22:7Þ

For a binary alloy, the net growth rates can be written:

vA ¼ v0
A CL

A � CS
A exp

�l0
A

kT

� �� �
ð22:8Þ

and:

vB ¼ v0
B CL

B � CS
B exp

�l0
B

kT

� �� �
ð22:9Þ

At equilibrium,

vA ¼ vB ¼ 0 ð22:10Þ

Equating the rates at which each species of atom joins and leaves the crystal implies
that the chemical potentials of each species is the same in both phases.
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22.2

Phase Equilibria

For the simple phase diagram in Fig. 22.1, when the temperature is between TM
A and

TM
B, the A atoms are below their melting point, so they freeze faster than they melt, but

the B atoms are above their melting point, so they melt faster than they freeze. This
implies

vL!S
A > vS!L

A and vL!S
B < vS!L

B ð22:11Þ

Given the four rates as illustrated in Fig. 22.2, there will be only one set of composi-
tions for the two phases, at any temperature, which satisfy both the relationships:

CL
AvL!S

A ¼ CS
AvS!L

A

CL
BvL!S

B ¼ CS
BvS!L

B

ð22:12Þ

together with CL
A þ CS

A ¼ 1 ¼ CL
B þ CS

B.

Figure 22.1 Binary alloy phase diagram.

Figure 22.2 Schematic of compositions and transition rates at

the interface. The lengths of the heavy and light arrows indicate

the transformation rates of the black and white atoms, respec-

tively.
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Outside of the temperature interval between TM
A and TM

B, there will not be a set of
compositions that satisfy these equations, because above TM

A both species melt faster,
and below TM

B, both freeze faster. This explanation is based on the simple phase dia-
gram, where the rates are relatively independent of composition, but the conclusion is
generally valid, that a two-phase field occurs where the atoms of one species freeze
faster than they melt, and the atoms of the other species melt faster than they freeze.

The overall growth rate of an alloy can be written as:

v ¼ vA þ vB ð22:13Þ

The instantaneous ratio of the compositions of the two species in the growing crystal is
given by the ratio of the net rates at which they enter the crystal:

vA

vB

¼ CS
A

CS
B

ð22:14Þ

The equilibrium distribution coefficient, k, for the B component is given by the con-
dition vB ¼ 0 in Eq. 22.9.:

k � CS
B

CL
B

¼ exp ��l0
B

kT

� �
ð22:15Þ

22.3

Regular Solution Model

The regular solution model adds a composition-dependent energy term, �CACB, to the
expression for the free energy of an ideal alloy, Eq. 22.6, so the free energy of a regular
solution is:

G ¼ CAl
0
A þ CBl

0
B þ kTðCA ln CA þ CB ln CBÞ þ �CACB ð22:16Þ

This regular solution term has a simple interpretation in terms of the bonding between
atoms. We will define fAA, fAB, and fBB as the bond energies between neighboring
AA, AB, and BB atoms, respectively. Z is the number of nearest-neighbor sites around
each atom in the crystal. The number of A atoms is NA, the number of B atoms is NB,
and NA + NB¼N, the total number of atoms. The concentrations are given by CA¼NA/
N, and CB ¼ NB/N. The number of AB pairs will be ZX, where X is the probability of
finding a B atom next to an A atom. In general, X will depend on the concentration,
and also how the atoms are arranged in the crystal, whether there is clustering of like
atoms, or whether there is ordering.

However, for any configuration of atoms, we can construct table 22.1.
The first term in the total energy of pairs in the table corresponds to the energy part

of the first two terms in Eq. 22.16. The second term in the total energy of the pairs in
the table corresponds to the regular-solution term in Eq. 22.16. In the table we have
used:

W ¼ fAA þ fBB

2
� fAB ð22:17Þ
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The total energy of pairs in the table is valid for any configuration of atoms. For the
special case of a random distribution, the number of AB pairs is:

X ¼ NANB

N
¼ NCACB ð22:18Þ

The total energy of pairs can be converted to the average energy per atom by dividing by
N, the total number of atoms, so that X/N ¼ CACB. The regular solution parameter, �

in Eq. 22.16, is given by:

� ¼ ZW ¼ Z
fAA þ fBB

2
� fAB

� �
ð22:19Þ

The regular solution model, Eq. 22.16 assumes that the two types of atoms are ran-
domly distributed. In terms of bond counting, the regular solution model assumes that
the three different bond energies are independent of composition.

For an ideal solution, W ¼ 0, so that (fAA + fBB)/2 ¼ fAB.
For (fAA + fBB)/2 > fAB , the formation of AA and BB pairs lowers the total energy,

so that the alloy will tend to phase separate.
For (fAA + fBB)/2 < fAB, the formation of AB pairs lowers the total energy, so that

the alloy will tend to order.
For a non-ideal alloy, the departure from ideality is usually expressed as an activity, k,

which is an “effective concentration” in the chemical potential, in the form of kT lnk.
For a regular solution,

l� l0 ¼ kT lnk ¼ kT ln Cþ �ð1� CÞ2 ð22:20Þ

So that the activity is:

k ¼ C exp
�ð1� CÞ2

kT

 !
ð22:21Þ

Since most departures from ideality primarily involve a change in the interaction en-
ergies with composition, and not a change in entropy, this is a convenient, but not very
physically reasonable method of treating departures from ideality.

Table 22.1 Scheme for counting bonds in an alloy. X is the probability of finding a B atom next to an A atom.

Number of pairs Energy of pairs

AA (Z/2)(NA – X) – (Z/2)(NA – X)fAA

AB ZX – ZXfAB

BB (Z/2)(NB – X) – (Z/2)(NB – X)fBB

Total (Z/2)(NA + NB) – (Z/2)(NAfAA + NBfBB) + ZWX
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22.4

Near-Equilibrium Conditions

The equations for the growth rate can be written:

vA ¼ v0
A CL

A � CS
A exp

�HA

k

1

TM
A

� 1

T

� �� �� �
ð22:22Þ

vB ¼ v0
B CL

B � CS
B exp

�HB

k

1

TM
B

� 1

T

� �� �� �
ð22:23Þ

DHA and DHB are independent of concentration for an ideal alloy, but in general, they
depend on the composition of the alloy. Alternatively, but equivalently, the composi-
tions can be replaced with activities. The liquidus temperature, TL, for liquid of com-
position CL at equilibrium with the solid is given by the simultaneous solution of the
two equations for v ¼ 0:

CS
A

CL
A

¼ exp
�HA

k

1

TL

� 1

TM
A

� �� �
ð22:24Þ

and

CS
B

CL
B

¼ exp
�HB

k

1

TL

� 1

TM
B

� �� �
¼ k ð22:25Þ

CA
S/CA

L and CB
S/CB

L (= k) do not change significantly for small growth rates, so that

vA ¼ v0
ACL

A 1� exp
�HA

k

1

TL

� 1

T

� �� �� �
� v0

ACL
A

�HA

kT

�TL

TL

� �
ð22:26Þ

and similarly,

vB ¼ v0
BCL

B 1� exp
�HB

k

1

TL

� 1

T

� �� �� �
� v0

BCL
B

�HB

kT

�TL

TL

� �
ð22:27Þ

where DTL ¼ TL–T is the undercooling below the liquidus.
The overall growth rate can be written as:

v ¼ vA þ vB � v0
ACL

A

�HA

kT
þ v0

BCL
B

�HB

kT

� �
�TL

TL

� �
ð22:28Þ

For a constant density of active growth sites, f, the growth rate is linear with under-
cooling below the liquidus line. This equation can also be written as:

v � v0
ACL

A

�lA

kT
þ v0

BCL
B

�lB

kT

� �
ð22:29Þ

An expression that has been used for the growth rate of an alloy:

v ¼ v0 exp
�G

kT

� �
ð22:30Þ
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is only valid for small concentrations of the second component when CB
L� 0, CA

L� 1
and DG� DlA, since in general DG¼ 0 does not define the equilibrium condition for
an alloy. Equilibrium for an alloy occurs when the chemical potential of each compo-
nent is the same in both phases, which does not imply DG ¼ 0.

For small concentrations of the B component, we can write: ln(CA
S) ¼ ln(1 – CB

S)
¼ ln(1 – kCB

L)� –kCB
L, where k is the equilibrium distribution coefficient, and ln(CA

L)
¼ ln(1 – CB

L) � –CB
L for small CB

L, so that Eq. 22.24 for the A component reduces to:

CL
B ¼

�HA

ð1� kÞk
1

TL
� 1

TM
A

� �
ð22:31Þ

This equation can be rewritten as:

TL ¼ TM
A �mCL

B ð22:32Þ

where

m � ð1� kÞkTLTM
A

� �
=�HA ð22:33Þ

which is the standard thermodynamic expression for the slope of the liquidus line for
small concentrations of a second component, also known as the freezing-point depres-
sion. For small concentrations of B, the undercooling at the interface can be written in
familiar form as:

�T ¼ TM
A � T ¼ mCL

B þ lvA ð22:34Þ

where l ¼ kTLTA
M/DHAvA

0 is termed the kinetic coefficient.

22.5

Phase Diagrams

The simplest scheme for constructing phase diagrams is to fit the liquid to an ideal-
solution model and the solid to a regular-solution model.

FL ¼ ð1� CLÞl0A
L þ CLl

0B
L þ kT CL ln CL þ ð1� CLÞ lnð1� CLÞ

� �
ð22:35Þ

FS ¼ ð1� CSÞl0A
S þ CSl

0B
S þ kT CS ln CS þ ð1� CSÞ lnð1� CSÞ

� �
þ �CSð1� CSÞ

ð22:36Þ

Here C is the composition of the B component. More complex schemes are used for
detailed descriptions of alloy phase diagrams. But this model works well for many
cases.

The three components of the free energy of a regular solution, Eq. 22.36 are shown
in Fig. 22.3.

The first two terms in Eq. 22.36 represent a linear interpolation between the chemical
potentials of the pure materials. The second term is the entropy of mixing. The third
term is the regular solution term, which adds a simple composition-dependent term to
the energy of the alloy. The entropy of mixing term starts off with infinite slope at each
end, and so the sum of the three terms always starts off going down at the two ends.
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For a case where the regular solution parameter is small, the free-energy curves for
the solid and liquid at some temperature between the melting points of the two end
members will look like Fig. 22.4a, and the corresponding solidus and liquidus com-
positions on the phase diagram, Fig. 22.4b, are given by the Gibbs common tangent
construction.

The chemical potentials of the two components of a phase are found graphically by
drawing a tangent to the free-energy curve at the composition of interest, and extend-
ing the tangent line all the way across the diagram. At the left axis, the tangent line
gives the chemical potential of the A component, and at the right axis, it gives the
chemical potential for the B component. When both phases are present, drawing
the common tangent to both free-energy curves assures that the chemical potentials
of both species are equal in the two phases, and so the common tangent points are the
equilibrium compositions.

A slightly larger value of the regular solution parameter will flatten out the free-
energy curve for the solid phase, which can result in the free-energy curves sketched
in Fig. 22.5a, and the corresponding phase diagram, Fig. 22.5b.

Figure 22.3 Components of the free energy

of a regular solution.

Figure 22.4 a) The free energy versus composition, and

b) the corresponding phase diagram for a nearly ideal alloy.

a) b)
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When the regular-solution parameter is larger, the free-energy curve for the solid
can develop a hump in the middle. This gives rise to a phase-separated region or an
ordered region on the phase diagram as illustrated in Fig. 22.6.

If the hump in the free-energy curve occurs at a temperature where the liquid has a
similar free energy, a eutectic phase diagram can result, as illustrated in Fig. 22.7.

This occurs when the free energy of the solid can be represented by a regular solu-
tion at all compositions. There are many alloys for which the end members have dif-
ferent crystal structures, so that it is not possible to describe the free energy of all the
compositions of the solid with a single free-energy curve. There are then two different
free-energy curves, one for each of the two solid phases. The free-energy curve for each
solid phase will have its own minimum, so there are two different minima to interact
with the liquid phase, just as in Fig. 22.7a. Even though the free-energy diagrams are
quite different, the phase diagram will also be a eutectic.

Figure 22.5 a) The free energy versus composition, and b) the corresponding

phase diagram for a larger value of the regular solution parameter.

Figure 22.6 a) The free energy versus composition, and b) the corresponding

phase diagram showing a phase-separated region or an ordered region.

a) b)

a) b)
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22.6

The DLP Model

Stringfellow [6] has developed the delta lattice parameter (DLP) model for mixtures of
III-V elements. In the DLP model, the regular solution parameter, �, is given by:

� ¼ 1:15� 105 ðaA � aBÞ
2

ðaA þ aBÞ
4:5

cal=mol ð22:37Þ

where aA and aB are the lattice parameters of the two end components in Angstroms.
This scheme works very well, not only for binary alloys, but for pseudo-binary alloys
such as, for example, GaAs-AlAs.

The regular-solution parameter cannot be estimated this simply for most alloys, but
the thermodynamic properties of many alloys can be described using a regular-solu-
tion model, especially over a limited composition range.

Figure 22.7 a) The free energy versus composition, and b) the corresponding eutectic phase diagram.

References

1 J. W. Christian, The Theory of Transformations in
Metals and Alloys, Pergamon, Oxford, UK, 1975.

2 M. Hillert, Phase Equilibria, Phase Diagrams and
Phase Transformations, Cambridge University
Press, New York, NY, 1998.

3 D. A. Porter, K. E. Easterling, Phase Transfor-
mations in Metals and Alloys, 2nd edn, Chapman
and Hall, London, UK, 1992

4 W. A. Tiller, The Science of Crystallization,
Cambridge University Press, New York, NY,
1991

5 H. Okamoto, Phase Diagrams for Binary Alloys,
ASM, Materials Park, OH, 2000.

6 G. B. Stringfellow, Organometallic Vapor-Phase
Epitaxy, 2nd edn, Academic Press, Boston, MA,
1999, 27.

a) b)

22 Alloys: Thermodynamics and Kinetics320



Problems

1. What is the difference between an ideal solution and a regular solution?
2. Discuss the entropy of mixing.
3. Perform a simulation as follows.

Start with a square array of 50�100 sites (50 rows by 100 columns).
Fill half of the sites with A atoms and the other half with B atoms (or 1s and 0s) in
any pattern you choose.
Use periodic boundary conditions on the top and bottom of the array.
Use periodic boundary conditions on the left and right edges, except use the other
type of atom as the nearest neighbor. That is, if the atom at one end of a row is A,
then use a B nearest neighbor for the site at the other end of the row.
Pick two sites at random.
Calculate the total energy of the two sites, E1, due to the bonding energy with their
nearest neighbors, using:

fAA=kT ¼ fBB=kT ¼ 5; fAB=kT ¼ 2:5:

(Make sure that a stronger bond reduces the energy!)
Now calculate the total energy of the two sites, E2, which would result if the two
atoms were interchanged.
If the interchange would reduce the total energy, i.e. if E1 > E2, perform the inter-
change.
If the interchange would increase the total energy, i.e. if E2 > E1, perform the
interchange if a random number is less than exp((E1 – E2)/kT).
Continue interchanging pairs until the pattern of A and B atoms stops changing.
Display the resulting pattern.

Repeat for:

fAA=kT ¼ fBB=kT ¼ 5; fAB=kT ¼ 7:5:

fAA=kT ¼ fBB=kT ¼ 1; fAB=kT ¼ 0:5:

fAA=kT ¼ fBB=kT ¼ 1; fAB=kT ¼ 1:5:

Discuss the results.
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Chapter 23

Phase Separation

Phase separation is a process whereby some homogeneous alloys decompose into
regions of differing compositions without nucleation. This process is also known
as spinodal decomposition [1].

23.1

Ordering versus Phase Separation

The regular solution parameter, �, was expressed in terms of the bond energies in
Eq. 22.19.

� ¼ Z
fAA þ fBB

2
� fAB

� �
ð23:1Þ

so that when � is positive there tends to be phase separation and when � is negative,
there tends to be ordering. At first sight it appears that one of these increases the free
energy of the alloy, and the other decreases it. So how do both ordering and phase
separation occur? The form of the regular solution term in Eq. 22.16 assumes that
the atoms are randomly distributed. This is then the free energy for a random mix-
ture. Ordering or phase separation does not change the value of �, but rather it
changes the number of AB pairs, that is, it changes the value of X in Table 22.1.
And so the number of AB pairs is no longer given by NANB/N.

The mathematics for both ordering and phase separation are the same, but the order
parameters are defined differently. For phase separation, the order parameter is de-
fined in terms of the probability of an A atom having other A atoms as nearest neigh-
bors. For ordering, the order parameter is defined in terms of the probability of finding
a B atom on the B sub-lattice of the ordered structure.

For the case of ordering it is not unusual to find that the ordered alloy forms a
different crystal structure from the disordered solid solutions.

Kinetic Processes. Kenneth A. Jackson
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23.2

Phase Separation

For the free-energy curve in Fig. 22.6a, the compositions of the solid phase in the
central region of the phase diagram are unstable, as illustrated in Fig. 23.1.

Where the curvature of the free-energy curve is negative, as illustrated in Fig 23.1,
the alloy can reduce its free energy by forming separate regions that are slightly higher
and slightly lower than the average composition. The range of compositions where the
curvature of the free-energy curve is negative is known as a spinodal. The free-energy
curve of Fig. 23.1 is for one temperature. If temperature were plotted as a third dimen-
sion the hump in the curve would be part of a ridge on a three-dimensional surface.
The ridge resembles a spine, and hence the name.

Phase separation occurs in many alloys and mixtures, for example in aluminum-
copper alloys. When a liquid separates into two liquid phases, a liquid cooled through
the critical point suddenly becomes opaque. This is known as critical opalescence, and
it happens very quickly, because diffusion in liquids is so rapid. Phase separation also
occurs in glasses, for example borosilicate glasses, where boron oxide separates from
the silica. This process is used commercially as a relatively low-temperature process to
make silica. After phase separation, the boron-rich phase is etched away, leaving a
porous silica structure, which is then densified by annealing. The resulting silica glass
is known as VYCOR.

In Fig. 23.2a, the two equilibrium compositions are identified by the common tan-
gent. The points on the free-energy curve where the curvature changes from positive to
negative are also identified. The boundary of the spinodal region in Fig. 23.2b is where
the curvature of the free-energy curve changes sign. Inside this region, the alloy can
lower its free energy by gradually making small fluctuation in composition, which
grow. Outside of this region this will not occur.

For a regular solution, the free energy is given by Eq. 22.16. Using
C ¼ CB ¼ I� CA; the first derivative of the free energy with respect to composition is:

dG

dC
¼ �l0

A þ l0
B þ kT ln Cþ lnð1� CÞ½ � þ �ð1� 2CÞ ð23:2Þ

Figure 23.1 The alloy can lower its free energy

by separating into two regions, one of lower

composition, and the other of higher compo-

sition.
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The curvature of the free-energy curve is given by the second derivative:

d2G

dC2
¼ kT

1

C
þ 1

1� C

� �
� 2� ð23:3Þ

This is negative inside the spinodal, and positive outside it, so the spinodal boundary
is given by:

Cð1� CÞ ¼ kT

2�
ð23:4Þ

The critical point occurs at the composition C ¼ 1/2, and so TC ¼ W�/2k.
The equation for the spinodal boundary is thus:

T ¼ 2�

k
Cð1� CÞ ¼ 4TCCð1� CÞ ð23:5Þ

Inside the spinodal, phase separation occurs by up-hill diffusion, that is, the atoms
diffuse up rather than down the concentration gradient. This occurs because of

Figure 23.2 a) The free energy versus composition, and b) the corresponding

phase diagram.

a)

b)
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the concentration dependence of the free energy of the alloy. So concentration differ-
ences tend to increase, rather than smooth out. This can be quantified by using the
gradient of the activity rather than the gradient of the composition as the driving force
in Fick’s first law, in order to determine the effective diffusion coefficient. For a reg-
ular solution the activity of the B component is:

kB ¼ CB exp
�ð1� CBÞ

2

kT

" #
ð23:6Þ

The diffusion flux due to the gradient in the activity is:

J ¼ �D
dkB

dx
¼ �D

dkB

dCB

� dCB

dx

¼ �D exp
ð1� CBÞ

2�

kT
1� 2�

kT
CBð1� CBÞ

� �" #
dCB

dx

ð23:7Þ

The effective diffusion coefficient is the part in front of the concentration gradient:

Deff ¼ D exp
ð1� CBÞ

2�

kT

 !
1� 2�

kT
CBð1� CBÞ

� �
ð23:8Þ

The term in the square brackets is negative inside the spinodal, (Eq. 23.3), and so the
effective diffusion coefficient is negative there.

23.3

Analytical Model for Spinodal Decomposition

Spinodal decomposition was first described in detail using an approximation to the
Ising model [2]. It can be readily simulated in a computer using Monte Carlo methods
on an Ising-type model for alloys. If � in Eq. 23.1 is positive, the A atoms cluster, and
the B atoms cluster, creating a phase-separated structure. When � is negative, AB pairs
form preferentially, and the alloy orders. However, it is difficult to translate the atomic
distributions of the Ising model, which mimic the atomic distributions in the real
world, into an analytical model.

A simple analytical model for the free energy of an alloy with a one-dimensional
concentration gradient is to assume that the free energy, Fi, of each layer of atoms,
i, depends on the concentration of the layer as given by Eq. 22.16, and then to
sum the free energies of the layers to obtain the total free energy:

GTotal ¼
X

i

Gi ð23:9Þ

But this completely ignores the contribution of the neighboring layers of atoms to the
free energy of the layer i. This assumes that the free energy of layer i is the same
whether the neighboring layers are all pure A or pure B or anything in between.
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And so this model predicts that phase separation occurs with a large change in con-
centration between adjacent atom planes. But the free energy of a plane of atoms does
depend on the composition of the neighboring planes.

In order to get around this problem, Cahn and Hilliard [3] added a gradient energy
term:

GTotal ¼
X

i

Gi þ KðCi � Ci�1Þ
2

h i
ð23:10Þ

This term is zero if the composition is uniform, but it introduces a contribution from
the neighboring planes if the composition is not uniform. It precludes the formation of
abrupt composition changes. The composition difference enters as a squared term, so
that the contribution is independent of the direction of the composition gradient. K is a
constant whose magnitude depends on the properties of the alloy.

The summation can be converted to an integral:

GTotal ¼
Z
V

GðCÞ þ KðrCÞ2
h i

dV ð23:11Þ

The variation of the free energy with composition can be expressed as a Taylor series:

GðCÞ ¼ GðC0Þ þ ðC� C0ÞG0ðC0Þ þ
1

2
ðC� C0Þ

2G00ðC0Þ þ � � � ð23:12Þ

We will assume a sinusoidal variation of composition in the z direction:

C ¼ C0 þ A cosðbzÞ ð23:13Þ

Inserting this composition variation into Eq. 23.12 gives:

GðCÞ ¼ GðC0Þ þ A cosðbzÞG0ðC0Þ þ
1

2
A2 cos2ðbzÞG00ðC0Þ þ � � � ð23:14Þ

Substituting this value of G(C) into Eq. 23.11:

GTotal ¼
Z

GðC0ÞdVþ AG0ðC0Þ
Z

cosðbzÞdVþ 1

2
A2G00ðC0Þ

Z
cos2ðbzÞdVþ � � �

þ KA2b2

Z
sin2ðbzÞdV ð23:15Þ

The first term on the right-hand side is just F(C0). The integral of the cosine in the
second term is zero. The integral of both the sin2 and cos2 is 1/2. Equation 23.15 be-
comes:

GTotal ¼ GðC0Þ þ
1

4
A2G00ðC0Þ þ � � � þ

KA2b2

2
ð23:16Þ

The sinusoidal composition variation will decrease the total free energy if the second
term on the right-hand side is negative and larger than the last term:

�G00ðC0Þ > 2Kb2 ð23:17Þ

23.3 Analytical Model for Spinodal Decomposition 327327



For a regular solution G”(C) is given by Eq. 23.3, and as discussed above, it is negative
inside the spinodal. There is a largest value of b which satisfies the inequality of Eq.
23.17. There is a corresponding shortest wavelength, kC, which will grow, given by:

kC ¼
2p

bC

� � 8p2K

G00ðCÞ

� �1
2

¼ 8p2K

2ZW� kT

Cð1� CÞ

0
BB@

1
CCA

1
2

ð23:18Þ

It can be shown, by inserting the expression for the total free energy into the time-
dependent diffusion equation, that the fastest-growing wavelength is

ffiffiffiffiffiffiffi
2kc

p
. This is

the wavelength that is most likely to be observed experimentally.

23.4

Microstructure Resulting from Phase Separation

For either nucleation or phase separation, the equilibrium compositions are given by
the phase boundaries of the two-phase field. In the phase diagram, Fig. 23.2b, spinodal
decomposition will occur when an alloy is cooled into the spinodal region while it still
has a uniform composition. Cooling the alloy into the region between the phase
boundary and the spinodal boundary results in nucleation and growth of the composi-

Figure 23.3 The time evolution of spinodal decomposition on the left, and nucleation

and growth of a new phase on the right. The final structures are similar.
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tion on the other side of the two phase field. But the final equilibrium compositions
will be rather similar. Even the microstructures can be similar if the formation of the
two phases occurs on a very small distance scale so that coarsening is very rapid.

Nucleation occurs by the formation of small volumes of quite different composition
from the matrix. Spinodal decomposition occurs on a larger distance scale, but with
very small composition differences.

The behavior of a system in which nucleation of a new phase occurs is compared in
Fig. 23.3 with the formation of two separate phases by spinodal decomposition. The
final distribution of the two phases can be similar, so it can be difficult to determine
from the final structure whether the path involved spinodal decomposition or nuclea-
tion and growth.

It is observed that when the volume fraction of one of the phases is small, it tends to
form as isolated particles in a matrix of the larger volume fraction phase. When both
phases are of comparable volume fraction, each phase can be continuously connected
in the resultant structure, with the two phases intertwined, as illustrated in Fig. 23.4.

For comparable center-to-center distances between the two phases, there is less total
surface area if the structure consists of separate spheres in a matrix, if the ratio of
volume fractions, VA/VB lies in the range:

p <
VA

VB

<
1

p
ð23:19Þ

Figure 23.4 Spinodal decomposition in a glass where the volume

fraction of each phase is similar. The two phases are intertwined.
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There is less total surface area if the structure consists of two continuous, intertwined
phases if:

p >
VA

VB

>
1

p
ð23:20Þ
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Problems

1. Show, by inserting the expression for the total free energy into the time-dependent
diffusion equation, that the fastest-growing wavelength is

ffiffiffiffiffiffiffiffi
2kC

p
.

2. Discuss the applicability of the free energy of a regular solution, as given by Eq.
22.33, to phase separation.
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Chapter 24

Non-Equilibrium Crystallization of Alloys

24.1

Non-Equilibrium Crystallization

In this chapter we will consider what happens when the rate of advance of the interface
becomes comparable to the rate at which atoms can move by diffusion. In this regime,
the quasi-equilibrium treatment based on thermodynamics, which is presented in
Chapter 22 will be modified by kinetic effects.

24.2

Experiment

The compositions, structure and properties of multi-component materials produced
by phase transformations that occur under conditions that are far from equilibrium are
often quite different from those predicted by equilibrium thermodynamics. The first
extensive observations of this were made by Duwez [1] using a technique he called
splat quenching. A molten drop of the alloy was propelled onto a curved copper
sheet. The copper sheet was held at an angle so that the droplet spread out along
it into a thin layer, typically a few micrometers thick. The samples crystallized very
quickly. The samples were analyzed using X-rays and transmission electron micro-
scopy (TEM). It was found that many metastable solid solutions could be formed.
That is, rather than the solid solubility that is found at equilibrium, and reported
on a phase diagram, solids with compositions in the two-phase field of the phase dia-
gram, containing much more of the second component than the equilibrium value,
were obtained. In some systems, solid solutions were obtained for all compositions of
the alloy.

The alloys that form metallic glasses are usually a mixture of metallic elements
and semi-metals or semiconductor elements, which crystallize into a complicated
crystal structure. And so these materials have large entropies of fusion. Since these
alloys crystallize slowly, they can be quenched into a glassy state where the atom mo-
bility is very small. For pure metals, the crystallization rate is so fast that this cannot
happen.

Kinetic Processes. Kenneth A. Jackson
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The composition of the solid that forms during crystallization is given by the dis-
tribution coefficient, also known as the k-value, which is defined as k � CS

B=CL
B.

Quantitative data are available for the dependence of the k-value on growth rate
during the very rapid recrystallization of laser-melted, ion-implanted silicon [2, 3].
These data were obtained by first ion implanting a dopant into a silicon wafer.
Then a very short, high-power laser pulse, which is a centimeter or so in diameter,
is directed at the surface. The total energy in the pulse is enough to melt a one to
two micrometer thick layer of the surface of the wafer. The wafer is at room tempera-
ture, so the bulk of the wafer acts as an efficient heat sink. The liquid layer recrystal-
lizes in a microsecond or so, with a growth rate in the range of meters per second.
Typical data for the observed concentration profiles are shown in Fig. 24.1.

The as-implanted dopant distribution is shown, together with the final distribution
of the dopant after laser melting of the surface. If the equilibrium distribution coeffi-
cient, 7� 10�4, had applied, all of the dopant would have been pushed to the surface by
the crystallization process. The data can be fitted only by using a k-value of 0.1, which is
over 100 times the equilibrium value. Similar data have been collected for aluminum
alloys.

The growth-rate dependence of the k-value is also responsible for the so-called “facet
effect” observed during the slow growth of semiconductor crystals. An increased in-
corporation of most dopants at a faceted region of the interface during growth at nor-
mal laboratory or production growth rates is observed.

Figure 24.1 The as-implanted distribution bismuth in silicon, and the distri-

bution after a surface layer of the crystal was melted an rapidly recrystallized.
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24.3

Computer Modeling

Computer modeling has reproduced all of the main features of these observations,
including the orientation dependence of the k-value. In addition the modeling has
provided a definitive explanation for the orientation dependence. This modeling
does not rely on any special properties of the atoms, it assumes the same interactions
between atoms that are responsible for the equilibrium properties of the alloy. The
modeling does incorporate the non-equilibrium effects that occur when the rate of
advance of the interface becomes comparable to the rate at which atoms can move
by diffusion.

Simulations of “diffusionless” transformations have been carried out, where the
transformation takes place by the motion of the interface, but the atoms do not
move: their position is fixed on lattice sites. These simulations correspond, for exam-
ple, to a “shear” or martensite-type transformation where the interface moves very
rapidly, at rates approaching the speed of sound. The atoms have sufficient time
only to shift their positions a small amount to conform to the new structure as the
transformation front passes. Growth and melting of the alloy in these simulations
were observed below and above the T0 line, respectively, where T0 is the locus of
the temperatures on a phase diagram where the free energy of the solid alloy is equal
to the free energy of the liquid alloy with the same composition. This is clearly the
expected behavior for a diffusionless transformation since the kinetics of a diffusion-
less transformation should depend on the difference between the free energies of the
two phases, rather than on the difference between the chemical potentials in the two
phases of the species present. For the diffusionless case, freezing or melting should
depend on which phase has the lower free energy, and this occurs above and below T0,
as is observed in the simulations.

Data from Monte Carlo simulations of alloys that have been accumulated for a vari-
ety of different growth temperatures, growth rates and diffusion coefficients, both
above and below the roughening transition [4–7] are presented in Fig. 24.2. All of
these data fall on a single curve when they are plotted against the dimensionless para-
meter b, as in Fig. 24.2.

b ¼
ffiffiffiffiffiffiffiffiffi
avuk

D

r
ð24:1Þ

where a is the a lattice dimension, v is the growth rate, uk is the net rate at which atoms
join the crystal at active growth sites, and D is the diffusion coefficient in the liquid.

Near equilibrium, where both v and uk are small, b is small, and the k-value ap-
proaches the equilibrium value. When diffusion is relatively slow, and the growth
rate is relatively large, b becomes large, and the k-value approaches one.
b was first identified by Temkin [8] in his analytical modeling of alloy crystallization.

He suggested that b depends on the time it takes a fluctuating interface to pass an
atom, compared to the diffusion jump time.

An alternate explanation is based on whether a B atom at the interface is likely to be
engulfed during the time it spends at the interface. How far the interface moves during
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the average time that a liquid B atom spends at the interface can be compared with the
distance that an atom can diffuse during that time. If the interface moves further than
the B atom can diffuse, the probability that the B atom will be incorporated into the
crystal will be greatly increased.

Recall that the growth rate of a crystal can be written in general form as in Eq. 20.1:

v ¼ atþukf ð24:2Þ

Here a is the cube root of the atomic volume, f is the probability of finding an active
growth site in an area a2 of the interface, t+ is the rate at which atoms join the crystal at
the active growth sites, and uk is the normalized net rate of growth.

The rate at which a liquid atom at the interface joins the crystal is t+f, which is the
probability that the atom is at an active growth site, times the rate it joins the crystal
when it is at an active growth site. The average time that a liquid atom spends at the
interface before it joins the crystal is the reciprocal of this rate, 1/t+f.

The distance that the interface advances during this time is v/t+f. The distance that
an atom can move by diffusion during this time is (D/t+f)1/2. The ratio of these two
distances is b:

v

tþf

� ffiffiffiffiffiffiffiffi
D

tþf

s
¼

ffiffiffiffiffiffiffiffiffi
avuk

D

r
¼ b ð24:3Þ

Near equilibrium, b is small. For very fast growth or very slow diffusion, b approaches
infinity.

Figure 24.2 The distribution coefficient (k-value) data from Monte Carlo computer

simulations for a wide variety of growth conditions, plotted against b.
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24.4

Analytical Model

For near-equilibrium growth, the growth rate for the i-th component of an alloy can be
written as in Eq. 22.8 [4, 7]:

vi ¼ atþf CL
i � CS

i exp
�l0

i

kT

� �� �
ð24:4Þ

Where the term in the square brackets becomes uk for each species. Here Dli is the
chemical potential difference for each species, i, between the two phases. The overall
growth rate is then given by the sum of the vi, as in Eq. 22.13. This formulation is valid
when the atoms in the liquid move around rapidly compared to the rate at which the
interface passes. Each growth site then samples the average composition of the liquid.
Under these conditions, each atom effectively acts independently on being incorpo-
rated into the crystal, as is assumed implicitly in Eq. 24.4. As a result, this formulation
predicts that the distribution coefficient does not change significantly with growth
rate, and so it does not include the phenomena known as solute trapping.

When the growth rate becomes comparable to the rate at which atoms can move
around in the parent phase, the equations must be modified to take into account
that the atoms can no longer act independently. Equation 24.4 can be modified to
take into account these interactions by introducing a parameter P, which is related
to b. P is zero when b is zero, and P one when b is infinite:

1� P ¼ 1

1þ Ab
ð24:5Þ

A is a constant. When P = 0, the atoms act independently; when P = 1, all species
present in the liquid at the interface are incorporated at the same rate. In the modified
formulation, Eq. 24.4 becomes:

vi ¼ atþf CL
i � CS

i exp
ð1� PÞ�l0

i þ P�G0

kT

� �� �
ð24:6Þ

where DG0 is the free-energy difference between the crystal and the liquid.
For small v, when near equilibrium conditions prevail at the interface, P is small, and

Eq. 24.6 reduces to the quasi-equilibrium equation for the growth rate, Eq. 24.4. When
b is very large, that is when the diffusion rate is small compared to the growth rate, P
approaches 1. The growth rate of all the species then depends of the free energies of the
alloy in the two phases, rather than on their individual chemical potentials. Because the
atoms cannot move as the interface passes, they must enter the crystal cooperatively.
The composition of the solid will be the same as the composition of the liquid.

A simple approximate expression for the distribution coefficient for a small concen-
tration of a second component, B, can be obtained from Eq. 24.6 by noting, as in Eq.
22.15, that the equilibrium k-value, ke is given by:

ke ¼ exp ��l0
B

kT

� �
ð24:7Þ
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Since vB=atþf is usually small, and �F0 is small compared to �l0
i for small concen-

trations of B, we have:

k � k1�P
e ¼ k1=ð1þAbÞ

e ð24:8Þ

For near equilibrium growth, b is small, so k � ke. For large b, k approaches 1.
For growth on a rough interface, the growth rate, v, is proportional to uk. In this case,

b is proportional to v, and so Eq. 24.8 can be written as:

k � k1=ð1þA0vÞ
e ð24:9Þ

where A’ is a constant that can be determined from the constant A.

24.5

Comparison with Experiment

The critical experiments to explore the solute-trapping phenomenon were performed
by laser melting of a thin layer on the surface of a silicon single crystal that had been
ion implanted with a dopant as described above. In Fig. 24.3, experimental data are
presented for the growth-rate dependence of the k-value for silicon implanted with
bismuth [9–13], tin [14] and germanium [15].

Monte Carlo computer simulations have been performed using the crystal structure
of silicon, inputting the equilibrium k-values for silicon doped with germanium, tin
and bismuth. Data from these simulations are also presented in Fig. 24.3.

The lines in Fig. 24.3 are Eq. 24.8 using A = 8. The agreement between Eq. 24.8 and
the simulation results is quite good. There is also quite good agreement with the ex-

Figure 24.3 Simulation data and experimental data for the k-value for

silicon doped with germanium, tin and bismuth.
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perimental data for germanium, and there is good agreement with some of the experi-
mental data for bismuth. There is not good agreement with some of the experimental
data for bismuth, or with the experimental data for tin, which are from the same la-
boratory.

It is well known that the k-value of dopants in silicon, as well as in compound semi-
conductors, depends on the orientation of the growth front. In order to investigate this,
an extensive set of simulations were carried out in three dimensions using the crystal
structure of silicon, with various orientations of the interface. The growth rates for the
simulations using the crystal structure of silicon were correlated to experimental
growth rates as outlined above. The data agree well with experimental measurements
of the orientation dependence of bismuth incorporation into laser-melted silicon wa-

Figure 24.4 Kinetic phase diagram for various growth rates calculated from Eqs. 24.6.
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fers [16]. The k-value does not depend on orientation when plotted as a function of b
rather than as a function of the growth rate. The magnitude of uk, the undercooling
required for growth, is quite different on and off a facet for the same growth rate. This
difference accounts for the anisotropy in the incorporation of dopants on different
orientations during growth at the same rate. In physical terms, this means that in
order to keep up with the growth rate on a rough surface, the steps on a smooth sur-
face must move very rapidly, and this increases the incorporation of the dopant on the
facet.

Equation 24.8 is also in reasonable agreement with experimental results for the
growth-rate dependence of k-value for aluminum alloys and for a nickel alloy, all using
the same value of A.

Equation 24.6 can be used to calculate kinetic phase diagrams, such as the illustra-
tion in Fig. 24.4. As the growth rate increases, the solidus and liquidus lines both
collapse towards the T0 line given by the equality of the free energies of the two phases.

For growth under conditions where these non-equilibrium effects are present, the
kinetic phase diagram and the associated k-value, rather than the equilibrium values,
should be used to describe the growth conditions and segregation effects.

24.6

Crystallization of Glasses

Glasses usually crystallize at reasonable rates only far below their equilibrium melting
points. However, in glasses, unlike in liquids, the diffusion rate of dopants or second
components is often much faster than diffusion rate of the components of the glass
matrix. The crystallization rate depends on the mobility of the major components of
the glass matrix. Dopants that can move by diffusion much faster than the growth front
moves will not be trapped into the crystal. The segregation coefficient for these dopants
will be very close to the equilibrium value, even though the crystallization is taking
place far from equilibrium.
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Problems

1. At what growth rate will one tenth of the dopant atoms be incorporated into
the crystal for ke = 0.01 and a liquid diffusion coefficient of D = 10�8 m2 s�1?
At what growth rate will half be incorporated? Use A = 8, L/kTM = 1, a =
3 � 10�10 m, and v = 0.1 DT m s�1 in Eqs. 24.1 and 24.8.

2. A massive phase transformation is the name given to solid-state phase transfor-
mations that take place at low temperatures in alloys. Reports in the literature are
uncertain about whether a massive transformation occurs above or below the
solidus line on the phase diagram. Discuss.
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Chapter 25

Coarsening, Ripening

25.1

Coarsening

A collection of particles of different sizes will tend to coarsen, that is the average par-
ticle size will grow, in order to reduce the total surface area of the collection of particles.
This will proceed only when there is enough mobility of the atoms. This process is
known as Ostwald ripening [1].

25.2

Free Energy of a Small Particle

The size dependence of the free energy of a cluster or particle was discussed in Chapter
15.

The total free energy to form a particle depends on the volume and on the surface
area of the particle. There is a critical radius r* at which the particle can reduce its free
energy either by growing or shrinking. The free energy to form a particle of radius r
can be written as in Eq. 15.1:

�G ¼ � 4

3
pr3�GV þ 4pr2r ð25:1Þ

The critical radius is:

r� ¼ 2r

�GV

ð25:2Þ

This is illustrated in Fig. 25.1. The critical radius represents an unstable size of par-
ticle. A cluster of atoms of radius r* can reduce its free energy either by growing or by
shrinking. Atoms join and leave it at equal rates so it is in equilibrium, but it is an
unstable equilibrium. If there is a distribution of particles of various sizes, as illu-
strated in Fig. 25.2, the large ones, with radius greater then rC will tend to grow,
and the small ones will tend to shrink. On average, the particle size increases with
time, and this is coarsening. The total surface area of the collection of coarse particles
is less than the total surface area of the same volume of material in finer particles.
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In a solution, either solid, liquid or gaseous, containing particles, there will be some
average concentration, C, of the species that form the particles. This concentration
depends on the average size of the particles present. There is a size of particle that
is in unstable equilibrium at this concentration. Particles smaller than this size
will shrink, and larger particles will grow.

In order to describe this process, we would like to know how many particles there are
of various sizes, how the average concentration, C, changes with time, and how the
particle-size distribution evolves over time. Since the large particles in the distribution
are growing, and the smaller ones are shrinking, there is always a wide range of par-
ticle sizes. As time goes on, the average particle size increases, the average concen-
tration, C, increases, and since the critical radius increases, the size of particles that
will shrink increases. This is a very complex mathematical problem. The problem has
been simplified by looking for the particle-size distribution, N(n), of the form [2, 3]:

Nðn; tÞ ¼ PðnÞ � TðtÞ ð25:3Þ

This form implies that the cluster distribution has the same functional form, with the
amplitude evolving in time. Even these solutions are complex. Instead, we will look at a
simple model that suggests how the system evolves.

25.3

Coarsening in a Solution

The concentration of solution Cr at the surface of a particle of radius r is given by the
unstable equilibrium condition:

Cr � C0 � C0

a

r
ð25:4Þ

Figure 25.1 Free energy of a particle.

Figure 25.2 The larger particles will tend to grow, and

the smaller particles will tend to shrink.
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Here C0 is the equilibrium concentration for a very large particle, and a is a parameter
that depends on the surface tension, r:

a ¼ 2r�

kT
ð25:5Þ

� is the atomic volume. The average concentration of the solution, C, will depend on
the distribution of sizes of the particles. The growth rate of a spherical particle can be
written as:

ðCP � C0Þ
dr

dt
¼ D

C� Cr

d
ð25:6Þ

where d is the thickness of the composition boundary layer around the particle. The
particles here are not isolated, and the effective boundary layer thickness depends on
the proximity of other particles. From Eq. 25.5, the growth rate of the particle is:

dr

dt
¼ D

C� C0 1þ a

r

� �
dðCP � C0Þ

ð25:7Þ

which can be either positive or negative, depending on the size of r, as illustrated in
Fig, 25.3.

The radius critical size of particle, rC, is:

rC ¼
aC0

C� C0

ð25:8Þ

For separated particles, where C � C0, the critical radius changes in time as:

r2
C �

2DaC0

dCP

t ð25:9Þ

But this assumes that d does not change in time, so this growth rate is approximately
correct when the clusters are close together and their spacing determines d. It also
applies when the coarsening process is limited by the surface reaction rate. For

Figure 25.3 Growth rate for various particle

sizes.
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well-separated particles, d will be approximately the particle radius, the value obtained
from the steady-state diffusion solution. In this case:

drC

dt
¼ D

C� C0 �
C0a

r

� �

rCP

ð25:10Þ

So that:

r3
C �

3DaC0

CP

t ð25:11Þ

25.4

Coarsening of Dendritic Structures

Dendritic structures coarsen as the dendrites grow. This can be seen from a detailed
examination of the growing dendrite shown in Fig. 26.1. The spacing of the ripples
near the tip is much smaller than the spacing of the dendrite arms further back
from the dendrite tip. Only some of the bumps develop into branches, and as the
growth proceeds, the smaller branches shrink and disappear, while the larger
branches continue to grow.

The dendritic structure continues to coarsen after growth, as illustrated in Fig. 25.4
Both positive and negative curvatures of the surface are present in these structures.
The coarsening process continues as long as there is still liquid in the interdendritic

spaces.
The coarsening of dendritic microstructures has been studied extensively in copper,

aluminum, zinc, etc., alloys, by Flemings and his co-workers [4]. Their experimental
results are illustrated schematically in Fig. 25.5. The dendrite-arm spacing was found
to depend on the square root of the time, as suggested by Eq. 25.9. The data cover times

Figure 25.4 Coarsening of a dendritic structure in an alloy. The gross features remain constant, but the fine

features disappear. The pictures were taken 1, 3 and 5 minutes after the dendrites had grown.
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varying by six orders of magnitude, with the corresponding spacing changing by a
factor of 1000.

The time on the horizontal axis in Fig. 25.5 is the interval between when the sample
passes through the liquidus temperature, which is when the dendrites grow, and when
the temperature falls below the solidus line, which is when everything in the sample is
solid, as illustrated in Fig. 25.6.

The rate of coarsening is very rapid for fine structures, but slows significantly as the
structure coarsens. The initial scale of the dendrite structure depends on diffusion
processes, and so it is much finer for rapid growth rates. The dendrite arm spacing
in a casting does not depend on how rapidly the dendrites grow, since the as-grown
structure coarsens very quickly. The final dendrite arm spacing depends entirely on
the coarsening process.

25.5

Sintering

The sintering process is driven by the reduction in the surface area of the sintering
particles. This is an important process for making ceramic objects. The melting point
of many ceramic materials is so high that melt processing is prohibitive, and so objects

Figure 25.5 Dendrite arm

spacing plotted against the

square root of the time taken

for the sample to cool from

the liquidus temperature to

the solidus temperature of the

alloy.

Figure 25.6 The time in Fig. 25.5 is the time taken

for the sample to cool from the liquidus temperature

to the solidus temperature of the alloy.
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are fabricated by sintering of powders far below the melting point. The powder par-
ticles agglomerate and merge as illustrated in Fig. 25.7.

Where the powder particles are in contact, they form a neck. The surface curvature is
negative in the neck region and this drives diffusion processes that tend to merge two
particles into a single sphere, and to merge a powder compact into a solid body. The
process is driven by surface tension, but there must be mobility of the atoms. This can
be bulk diffusion, surface diffusion, or even vapor transport. Usually the sintering is
carried out at elevated temperatures to promote the mobility. Often a second compo-
nent with increased mobility, such as a glass with a low softening temperature, is
added.

An interesting process was developed by Coble to make the quartz sheaths that are
used for high power halide light bulbs. The problem was that gas became trapped in
the pockets that formed in the spaces between the particles, during sintering. The
diffusion of the gas through the bulk was too slow to get rid of the pockets, and
the pockets became hot spots, limiting the operating temperature. Coble found
that the gas pockets shrank more rapidly when the gas could diffuse out along grain
boundaries. When grain growth occurred so that the grain boundary left a pocket it
shank much more slowly. So Coble added a component that pinned the grain bound-
aries. Bubble-free “Lucolux” quartz sheathes are made by this process.

25.6

Bubbles

Soap bubbles blown into the air pop because the water evaporates. But in a closed
container, a froth of bubbles coarsens by the migration of the soap films, not by pop-
ping. The air inside the closed container is saturated with water, but there is local vapor
transport from surfaces of positive curvature to surfaces with negative curvature. Lo-
cally, the junction between soap films forms at 120 degrees, as illustrated in the two-
dimensional drawing in Fig. 25.8.

In two dimensions, an array of hexagonal shapes is stable. The junctions where the
hexagons join can all form angles of 1208. Cells with other than six sides, such as the

Figure 25.7 Sintering of particles.
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pentagon in Fig. 25.8, must have curved sides in order to form 1208 angles at the
junctions. The sides of the pentagon will bow out, as illustrated in Fig. 25.9.

Evaporation occurs relatively faster from convex surfaces than from concave sur-
faces. This asymmetry in evaporation rate means that a soap film will move towards
its center of curvature. So the pentagon in Fig. 25.8 will shrink. A cell with more than
six sides will expand. A pattern that consists only of six-sided cells will have all straight
walls, and so will be relatively stable. The coarsening action comes from the cells that
do not have six sides.

An interesting topological fact is that a five-sided cell in a sea of six-sided cells does
not disappear when it collapses to a point. When it disappears, another five-sided
figure is created. The topological defect persists.

Coarsening has been illustrated above with a two-dimensional drawing, but similar
considerations apply to three-dimensional soap bubble arrays.

25.7

Grain Boundaries

Grain boundaries in metals tend to behave just like soap bubbles except that their
motion is a lot more complicated. There is a lot more known about this subject
than the brief outline that will be presented here.

Figure 25.8 Soap film in 2-D.

Figure 25.9 The sides of a pentagon must bow out if the corner

angles are maintained at 1208.
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First of all, grain boundaries can have a variety of energies, although in many metals,
high-angle grain boundaries all have relatively similar energies. The energy of these
high-angle boundaries is about the same as the energy of one or two atomic layers of
liquid. Small-angle tilt boundaries are made up of dislocations. Their energies are
much lower, and depend on the misorientation between the grains. There are also
twin boundaries, where the atom sites in the boundary plane are common to both
lattices. In a coherent twin boundary, all the nearest-neighbor atoms are in the right
place, but the second nearest neighbors are on wrong sites across the twin boundary.
There are also coincidence site boundaries where some of the atoms in the boundary
share sites with both lattices, as illustrated in Fig. 25.10.

High-angle boundaries will split into a coincidence site boundary and small-angle
boundary if that lowers the total energy. The angle that grain boundaries form at their
junctions depends on their relative energies.

The energy of twin boundaries in some crystals is very small. For example, it is very
low in copper, so many twin boundaries form during grain growth in copper. It is also
very low in silicon and many compound semiconductors, so that the formation of
twins during crystal growth can be a problem. The twin boundaries are relatively im-
mobile. In general, coincidence site boundaries are less mobile than high-angle
boundaries.

25.8

Scratch Smoothing

The effective mobility of surface atoms can be determined by measuring the rate at
which corrugations on a surface smooth out [5, 6]. This is also a process that occurs to
reduce the surface area. Surfaces can be made corrugated either by scratching them, or
using photolithography. Atoms move from the hills to the valleys to reduce the surface
area. In general the smoothing can occur by both bulk and surface diffusion, as de-
scribed by:

Z ¼ A0 exp �ðBx4 þ Sx3Þt
� �

sinxx ð25:12Þ

Figure 25.10 Coincidence site boundary. The

upper layer with light circles has been rotated

with respect to the heavy circles. The dots mark

the lattice sites that are common to both layers.
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Here A0 is the initial amplitude of the sinusoidal corrugation of the surface, which has
a wavelength 2p/x. The decay rate of corrugation due to bulk diffusion is given by:

B ¼ DB

ðc0 þ c000Þ
kT

� ð25:13Þ

and the decay rate due to surface diffusion is given by:

S ¼ nDS

ðc0 þ c000Þ
kT

� ð25:14Þ

Here � is the atomic volume, DB is the bulk diffusion coefficient, c0 and c0” are the
surface tension and the second derivative of the surface tension with respect to surface
orientation (the curvature of the Wulff plot), n is the density of mobile adatoms on the
surface, and DS is the diffusion coefficient of the adatoms on the surface. The surface
diffusion process can be distinguished from bulk diffusion because the two have dif-
ferent wavelength dependencies. Both the number of adatoms and their mobility
change with temperature, and the analysis gives only the product of the two, nDS.
This product is the effective surface mobility.

The experiment can be carried out by diffracting a laser beam from the corrugations.
The intensity of the diffracted beam depends on the amplitude of the corrugation.

The surface mobility of individual atoms has also been determined using scanning
tunneling microscopy (STM), by following the motion of individual atoms. This re-
quires many measurements in order to gather statistical information about the mo-
tion. There is also the issue of whether stresses from the presence of the STM tip have
an effect on the measurement.
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Problems

1. a) Plot the critical radius size as a function of time using Eq. 25.11, with a =
3 � 10�10 m, D = 10�8 m2 s�1, and C0/CP = 0.1.

b) How long does it take for the critical size to grow from 100 nm to 1 micrometer?
c) How long does it take for the critical size to grow from 1 mm to 1 cm?

2. For DB = 10�10 m2 s�1, and nDS = 10�4 m2 s�1, at what wavelength will the bulk and
surface contributions to scratch smoothing be equal?

25.8 Scratch Smoothing 349349





Chapter 26

Dendrites

26.1

Dendritic Growth

The word dendrite derives from the Greek word for tree, and means “tree-like”. Den-
dritic growth occurs only when a diffusion process dominates the rate at which the
phase transformation proceeds. An extensive study of this mode of growth was carried
out by Papapetrou [1]. Dendrites grow into a metastable phase that is either super-
cooled or supersaturated. The supercooling can be uniform throughout the sam-
ple, or it can be a region of constitutional supercooling ahead of an advancing inter-
face in an alloy.

26.2

Conditions for Dendritic Growth

Dendritic growth occurs when the interface kinetic processes are rapid, so that a planar
growth front is unstable. Essentially what happens is that the growth front sub-divides
the metastable phase into regions that are small enough so that diffusion processes can
remove the remaining instability.

The diffusion process responsible for dendritic growth can be thermal, composi-
tional, or both. In a pure material, where dendrites grow into a supercooled liquid,
the dendrites are a result of thermal diffusion. An example is shown in Fig. 26.1.

Experimentally, a liquid can be supercooled, and then, when the solid nucleates, the
growth is dendritic. Most liquids cannot be supercooled below about 80 % of their
melting points. But the latent heat in most materials is large enough to heat them
up through about 30 % of their melting points. So in most materials, the latent
heat of the freezing process is more than enough to heat an undercooled sample
up to the melting point before it is all frozen.

Dendritic growth can be very rapid: dendrites have been observed to grow at a rate
of 40 m s�1 into supercooled pure nickel.

Dendrites can also grow as a result of constitutional supercooling. In this case they
grow in an array as shown in Fig. 11.2. The growth proceeds at a rate determined by
the rate at which heat is extracted from the sample. This is the usual growth mode in
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the columnar zone in a casting, where the dendrites grow inwards from the mold wall
as heat is extracted. Dendrites can also grow into a supercooled alloy, in which case
both thermal and compositional diffusion are important. Since thermal diffusivities
are usually much larger than compositional diffusivities, there are two different diffu-
sion length scales involved, which makes for complex growth patterns and behavior.

Dendrites grow in crystallographic directions. For face centered and body centered
cubic crystals, the growth axis is <100>. The simple rule for this is to make a closed
figure out of the closest packed planes of the crystal, and the dendrites will grow out the

Figure 26.1 Dendritic growth

into an undercooled melt of

pure succinonitrile.

Figure 26.2 Dendrites grow in the directions of the corners.
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corners. For example, the closest-packed planes of the face centered cubic structure are
the (111) planes, and these form an octahedron, as illustrated in Fig 26.2. The corners
of this figure are in the <100> directions.

The dendrite stem and the branches in Fig. 26.1 are growing in <100> directions.
The elongated shape of the dendrites is a result of a non-linear amplification of the

growth rates at the corners. This process is illustrated in Fig. 26.3. A small anisotropy
in the kinetic coefficient or in the surface tension is amplified by the diffusion process,
because the diffusion process is faster where the interface is more convex. This turns a
small bump into a rapidly growing tip.

The anisotropy can create corners where growth is more rapid and these corners
develop into dendrites, as in the top sequence. Alternatively, the interface can become
unstable and develop an array of perturbations, and then the perturbations in the fast-
growing direction will take off, as in the lower sequence.

26.3

Simple Dendrite Model

The analysis of dendritic growth is a complex Stefan problem. A moving interface is a
moving source of heat and/or solute. The strength of the source depends on the rate of
motion of the interface. The position and rate of motion of the interface depend on the
local fields and gradients. These are lovely non-linear mathematical problems, and the
observed dendrite interface shapes are very complex.

In this section, an oversimplified model of a dendrite will be presented. It includes
the major components of the problem, and illustrates the inherent dilemma found in
analyzing dendritic growth.

The dendrite will be modeled as a cylinder of radius q, with a hemispherical cap on
the end, also of radius q, as illustrated in Fig. 26.4.

We will assume that the dendrite is growing at a constant rate v, into a supercooled
liquid, and that the diffusion field around the tip is given by the steady-state solution
for diffusion from a sphere, as derived previously for a composition field, Eq. 8.25. The
steady-state thermal field around the hemispherical tip of radius q is:

T ¼ T1 þ TI � T1
q

r

� �
ð26:1Þ

The temperature at the surface of the hemisphere is TI, and the far-field temperature
is T1.

Figure 26.3 Diffusion is faster away from the

surface where the radius of curvature is smaller.
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The total heat conducted away from the hemisphere is given by its surface area,
times the local heat flux:

�2pq2K
dT

dr

� �
r¼q
¼ 2pKðTI � T1Þq ð26:2Þ

where K is the thermal conductivity. The thermal gradient at the surface was derived
from the temperature distribution given by Eq. 26.1. We can take into account the
heating of the liquid along the side of the cylinder as the tip passes by limiting the
angle at the tip through which the heat is conducted away. We will assume that
the effective area through which heat can be conducted is reduced by a factor g2.

The rate at which the cylinder increases in volume is given by its cross sectional area
times the growth rate, v. Heat is produced by the growing dendrite at a rate given by the
rate of increase of volume times the latent heat, L:

pq2vL ð26:3Þ

The latent heat generated is carried away by the thermal gradient at steady state, so the
heat flux in Eq. 26.2 is equal to the heat generated, Eq. 26.3:

ðTI � T1Þ ¼
Lvq

2Kg2
¼ L

2Cg2
� tq
j

ð26:4Þ

where j = K/C is the thermal diffusivity, and C is the specific heat per unit volume.
The undercooling depends on the product of the radius and the growth rate. The

dimensionless quantity vq/j, where j is the thermal diffusivity, is known as the Peclet
number. Our analysis of the heat flow has not provided a specific growth rate for the
dendrite. Instead, the solution is in terms of the Peclet number. A dendrite with a
small tip radius growing rapidly or a dendrite with a large tip radius growing slowly
are equally valid. This is a common feature of all the analytical solutions for the diffu-
sion fields around a dendrite tip.

A similar analysis to the above can be carried out for solute diffusion away from a
growing dendrite tip.

Papapetrou [1] suggested that a dendrite tip should be parabolic, rather than the
cylinder that we used. He noted that the electric field gradient around a parabolic
tip was such that, if the surface was displaced normal to itself everywhere by an

Figure 26.4 Simple model

for a dendrite.
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amount proportional to the gradient, then the parabola would be displaced along its
axis, without changing shape. So this should be the steady-state shape for a dendrite
tip.

Many years later, Ivantsov [2] proved that the parabola (or a parabaloid of revolution,
which has a circular cross section) provides a valid steady solution to the heat flow from
a dendrite, provided that the interface is isothermal. His expression for the undercool-
ing at the interface is now known as the Ivantsov function:

�T ¼ Iv
vq

2j

� �
¼ � vqL

2K
exp

vq

2j

� �
Ei �

vq

2j

� �
ð26:5Þ

Ei (x) is the integral error function. He solved the problem by using the equation for
thermal diffusion as a boundary condition for the equation for the interface shape.
This is now known as Ivantsov’s method. But notice that the thermal field is expressed
in terms of the dimensionless Peclet number, vq/j.

Some other condition must be applied to determine the relationship between the tip
radius and the growth rate. The thermal analysis does not take into account either
kinetic undercooling at the interface or the undercooling due to surface curvature.
These can be incorporated formally by expressing the difference between the interface
temperature and the temperature far from the interface as the sum of a heat flow term,
DTH, a kinetic undercooling term DTK, and undercooling due to surface curvature,
DTr:

TM � T1 ¼ �TH þ�TK þ Tr ð26:6Þ

For our simple model this becomes:

TM � T1 ¼
Lvq

2Kg2
þ v=lþ 2rTM

qL
ð26:7Þ

In the kinetic term, the growth rate is assumed to be linear with undercooling and l is
known as the kinetic coefficient. The surface-tension term is the standard expression
for the undercooling of an interface that has a radius of curvature q, as in Eq. 15.3.

With the curvature term, the dendrite will grow more slowly if the radius of curva-
ture is too small, so this suggests that the dendrite should have a tip radius such that it
grows as fast as possible at a given undercooling. This is given by maximizing the
velocity in the above expression, which gives:

q2 ¼ 4rTMKg2

L2v
ð26:8Þ

Inserting this into the equation for the undercooling:

�T ¼ �TK þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
rTMv

Kg2

s
ð26:9Þ

So that for small values of DTK we have:

v a �T2 ð26:10Þ
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which is approximately the relationship which is observed for dependence of the
growth rates of dendrites on the thermal undercooling.

Data for dendritic growth in nickel in Fig. 26.5. The data were obtained by under-
cooling liquid nickel, then initiating crystallization, and measuring the rate at which
the dendrites grow. The line in Fig. 26.5 is v a�T2, which fits the data reasonably well
using a value of g in Eq. 26.9 that is about 0.5.

Data for dendritic growth in succinonitrile is presented in Fig. 26.10. The dotted line
is v a�T2, and the solid line is a least squares fit to the data. The parabola fits the data
reasonably well with an adjusted value of the factor g, but the slope is not quite right.

The curvature term has been added to the Ivantsov expression for the thermal field,
using the undercooling corresponding to the curvature at the tip. This also does not fit
the data. So maximizing the growth rate is not the answer. Furthermore, the curvature
varies along a parabolic dendrite, and so the undercooling along the dendrite is not
constant because of the curvature. The Ivantsov solution is not valid for this case.

The issue of what determines the tip radius is still not altogether settled. There have
been two schools of thought, one of which is known as the stability condition and the
other as the solvability condition [7–13].

Those who favor the stability condition have argued that the dendrite becomes un-
stable behind the tip, and develops ripples that grow into the side branches. They argue
that the instability process causes the tip radius to oscillate slightly about an average
value, and so the dendrite tip radius is controlled by the development of the perturba-
tions.

The solvability condition derives from numerical modeling of the dendrite tip. In
our analysis above, we assumed that the tip was a hemisphere, so it had a constant
radius of curvature everywhere on the surface. We also assumed that the kinetic under-
cooling term was the same everywhere on the surface. But neither of these assump-
tions is correct for a parabolic dendrite tip. Both the curvature of the surface and the
growth rate vary along the parabolic surface of the dendrite tip. The modeling suggests

Figure 26.5 Dendrite growth

rate for nickel as a function of

melt undercooling [3].
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that there is no way to adjust the shape of a dendrite tip to obtain stable growth if both
the surface tension and the kinetic coefficient are isotropic. But both the surface ten-
sion and the kinetic coefficient are anisotropic. It seems that the surface of the dendrite
can assume a shape that results in stable steady-state growth by adjusting to these
anisotropies. The anisotropy compensates in some way for the variation in curvature
and growth rate along the parabola. The modeling indicates that there are solutions,
which depend on the anisotropy, for a limited number of tip sizes and shapes. And
there are specific growth rates corresponding to these stable configurations.

There are now serious attempts to sort this out, using a combination of experimental
measurements and computer simulations to obtain the appropriate parameters. But
these are clearly not simple calculations. The modeling in the past has focused on the
anisotropy in the surface tension. Molecular dynamics simulations suggest that the
kinetic coefficient is both larger than had been used for calculations, and is also
more anisotropic. So the kinetic coefficient may well prove to be the key to dendritic
growth.

Figure 26.6 Dendrite growth rate

for succinonitrile as a function of

melt undercooling [4–6].
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26.4

Phase Field Modeling

Phase field modeling is a computer modeling method for describing processes such as
dendritic growth [14–16]. It is used to provide a bridge between the diverse length
scales involved in dendritic growth. There are equations for the thermal field, and
equations for the compositional field. The phase field model adds a parameter that
varies in space, and depends on which phase is present. The boundary between
the phases is assumed to have some finite thickness, and the properties vary continu-
ously from one phase to the other phase on going through the boundary. When the
interface moves, it generates heat and rejects solute over its thickness, and its motion
depends on its curvature. The thermal field, the composition field and the phase
field are all coupled. The thickness of the boundary is arbitrary, but it must be small
compared to the diffusion lengths involved in the problem, and it must be small com-
pared to the radius of curvature of the interface. Also the mesh size for computations
in the interface region must be small compared to the interface thickness. And so the
computations are not as simple and rapid as was hoped, but this is an extremely power-
ful method, which works very well for many cases where the input parameters are
known [17].

26.5

Faceted Growth

A small amount of anisotropy is important to determine the relationship between the
interface curvature and the dendrite growth rate. But the models assume that the
growth rate is linearly proportional to the local interface undercooling. This is valid
for metals growing from a melt, where all the surfaces are rough. There will, in gen-
eral, be a different kinetic coefficient for each growth direction, even though all the
growth rates are linear with undercooling. But for smooth surfaces, the growth rate is
not linear with undercooling. Moreover, where the growth rate is very anisotropic,
growth occurs by the rapid motion of steps across facets. The growth rate depends
on the formation of the steps, which occurs where there are defects, or on the part
of the facet where the undercooling is large enough for the nucleation of steps. So
the motion of the interface does not depend on the local conditions. There is not a
satisfactory analysis of the overall interface motion for such cases.

26.6

Distribution Coefficient

The distribution coefficient can increase from its equilibrium value at very rapid
growth rates, a process that is discussed in Chapter 24. This can result in a jump
in the growth rate of dendrites at some undercooling [18], as illustrated in Fig. 26.7.

26.6 Distribution Coefficient358



As the growth rate increases, the distribution coefficient increases. At a critical
growth rate the segregation coefficient starts to increase significantly. This decreases
the segregation, so the dendrite grows faster, and the segregation decreases more, etc.
In the figure, the dendrite growth rate for a 5 % lead in tin alloy jumps from a diffu-
sion-limited rate at 4 cm s�1 to a thermally limited growth rate of about 130 cm s�1 at an
undercooling of 24 degrees. Similar phenomena have been observed in other alloys
[19, 20].

Figure 26.7 Dendrite growth

rates for tin-lead alloys.
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Problems

1. For r = 0.3 J/m2, j = 10�5 m2 s�1, C = 5 � 10�6 J/m3 deg, m = 0.5 m s�1 deg, and
TM = 1700 8C, what value of g in Eq. 26.9 will fit the data in Fig. 26.5?
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Chapter 27

Eutectics

27.1

Eutectic Phase Diagram

Eutectic refers to a specific type of phase diagram, or part of a phase diagram, as
illustrated in Fig. 27.1, where a homogeneous liquid solidifies into two different solid
phases.

If a diffusion couple is formed between pure samples of the two solid phases at a
temperature below the eutectic temperature, the composition profile after some time
will be as illustrated in Fig. 27.2.

The composition at the spatial interface jumps from the value at one phase boundary
on the phase diagram to the other. The composition in the single phases regions varies
from the value far from the interface to the equilibrium value at the interface.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3

Figure 27.1 Eutectic phase diagram.
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27.2

Classes of Eutectic Microstructures

There are three classes of eutectic microstructures, and these depend on the solidi-
fication characteristics of the two primary phases [1].

I Both phases have small a-factors.
II One phase has a small, and the other a large a-factor.
III Both phases have large a-factors.

The first two of these microstructure classes were identified before the a-factor was
developed, and the classification was based on the relative magnitudes of the latent
heats of the end components.

27.2.1

Class I Eutectics

Most eutectic alloys between metals are in class I. The most common example is lead-
tin solder. These alloys form lamellar or rod microstructures. Figure 27.3 shows a
lamellar microstructure in a cadmium-tin alloy.

The growth front of a lamellar eutectic is illustrated in Fig. 27.4.
Each phase rejects the other component, and the rejected components interdiffuse

in the liquid ahead of the interface. This happens more readily if the lamellar spacing is
small. On the other hand, making the lamellar spacing small introduces more bound-
aries into the solid. Accordingly, the formation of these microstructures depends on a
balance between the segregation process necessary to form the two separate phases
and the energy required to introduce more interphase boundaries. For rough inter-
faces, typical of metals, the crystallization kinetics are sufficiently rapid that they do not
play a role. The formation of this type of microstructure will be treated in more detail
below.

Figure 27.2 Composition profile for a diffusion

couple at a temperature below the eutectic tem-

perature.
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Whether the microstructure is lamellar or rod depends on the relative volume frac-
tion of the two phases. For the same distance, S, between the centers of the two phases,
as illustrated in Fig. 27.5, the total interface area is less for the lamellar structure if
p > Va/V > 1/p.

For p < Va/V < 1/p, rod microstructures will have smaller total interface area. So
lamellar structures are observed when the eutectic composition is close to the middle
between the compositions of the solid phases. Rods form when the phase diagram is
very asymmetric, with the eutectic composition much closer to the composition of
one of the primary solid phases.

A very common example of a lamellar structure is low carbon steel, which is a
common structural steel used for bridges and buildings. In this case, the lamellar
structure, known as pearlite, forms by a solid-state reaction, on the decomposition

Figure 27.3 Lamellar microstructure in a

cadmium-tin alloy.

Figure 27.4 Growth front of a lamellar eutectic,

carbon tetrabromide-hexachloroethane.
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of austenite into alpha iron and iron carbide. This is called a eutectoid reaction because
the high-temperature phase is a solid. But carbon is interstitial in austenite, and its
diffusion coefficient is like that of a liquid. So the lamellar structure forms on a scale
that is similar to that of lamellar eutectics. The transformation rate for a thermally
activated transformation is shown schematically in Fig. 27.6a. This can be converted
into a transformation time plot, known as TTT plot, as in Fig. 27.6b.

The fastest rate corresponds to the shortest transformation time. Since this is a solid-
state reaction that depends on the mobility of the iron atoms in the crystal, it is re-

Figure 27.5 Surface area in

rod and lamellar structures.

Figure 27.6 a) Growth rate versus undercooling,

and b) the corresponding transformation time.

a)

b)
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latively slow. It is possible to quench a sample rapidly enough so that the cooling path
misses the nose of the TTT curve, in which case the lamellar structure will not form,
and so, at a lower temperature, a distorted, highly stressed, iron carbide structure
forms. These TTT diagrams are available for many steel alloys.

27.2.2

Class II Eutectics

The second class of eutectics includes one phase that only grows with significant ki-
netic undercooling. Eutectics between semiconductors and metals, and between inter-
metallic compounds and a primary metal phase usually fall into this class. Figure 27.7
is an aluminum-silicon alloy, of the kind used for airframes in airplanes.

The silicon phase provides significant strengthening of the aluminum matrix. The
growth of such a structure is illustrated in Fig. 27.8.

The silicon grows as a rod into the liquid, and the aluminum grows preferentially
into the enriched regions around these rods.

Other examples of Class II eutectics are shown in Fig. 27.9.
The microstructure depends on the shape of the solid/liquid interface during

growth, as illustrated in Fig. 27.10.

Figure 27.7 Aluminum-silicon alloy.
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Figure 27.8 Transparent alloy, succinonitrile-

borneol, which resembles the aluminum-silicon

alloy.

Figure 27.9 Microstructures of eutectic alloys with one primary metal phase

and one intermetallic phase. Left: Sn-Bi; center: Zn-Mg2Zn11; right: Zn-MgZn2.

Figure 27.10 Faceted interface in cyclohexane-

camphene, a Class II eutectic alloy.

27 Eutectics366



27.2.3

Class III Eutectics

The growth of a Class III eutectic alloy is illustrated in Fig. 27.11.
In both Class I and Class II the two phases can grow in a coupled manner, because a

non-faceted phase can follow the growth direction of the other phase. Here, the two
phases grow essentially independently. Of course, there is an interaction between the
two, because the composition around one phase is enriched in the other component of
the eutectic.

Class III eutectics were studied extensively by physical chemists many years ago,
because eutectics between many organic compounds are in this class. There was a
period where chemists were studying the growth of Class III eutectics, and metallur-
gists were studying the microstructures of Class I eutectics, and the two are so dif-
ferent that there seems to have been no cross-fertilization of ideas between the
two groups.

27.3

Analysis of Lamellar Eutectics

At the interface between the liquid and the growing crystal, the total interface under-
cooling can be written as the sum of three terms, one due to the local composition, one
due to the local curvature of the interface, and the third is the kinetic undercooling.

�T ¼ �TC þ�Tr þ�TK ð27:1Þ

For Class I eutectics, the first two terms are much larger than the kinetic undercooling,
DTK. For typical laboratory growth rates, the first two will be a few tenths of a degree,

Figure 27.11 Growth of azobenzene-benzil,

a Class III eutectic alloy.
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while the kinetic undercooling will be less than a millidegree, so the kinetic under-
cooling will be ignored in the following analysis of lamellar growth.

27.3.1

Curvature of the Interface

The local curvature of the interface provides the necessary undercooling to incorporate
the phase boundaries into the solid. That is, the local curvature of the interface in-
creases the undercooling required for the transformation. The curvature of the inter-
face depends on the shape of the interface as imposed by the angle that the interface
makes in the groove at the inter-phase boundary. The average undercooling of the
interface created by the curvature is exactly what is needed to incorporate the energy
of the inter-phase boundary into the solid. So the very high local energy associated with
creating the inter-phase boundary is spread across the interface by the curvature. This
can be demonstrated as follows.

The local undercooling due to curvature along the interface between the alpha phase
and the liquid is (as in Eq. 15.3):

L�T

TM

¼ raL

r
ð27:2Þ

where raL is the surface tension of the interface between the alpha phase and the
liquid, and r is the local radius of curvature of the interface. The total free-energy
difference due to the curvature of, say, the alpha phase is obtained by integrating
this along the interface, as illustrated in Fig. 27.12.

ZSa=2

0

dx

rðxÞ ¼
ZSa=2

0

d2z

dx2

1þ dz

dx

� �2
" #3=2

dx ¼ sin tan�1 dz

dx

� �����
Sa=2

0

¼ sin ha ð27:3Þ

Here Sa is the width of the alpha-phase lamellae, z is the interface height in the growth
direction, and x lies in the plane of the interface, perpendicular to the lamellae, as in
Fig. 27.12.

Figure 27.12 Interface shape.
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The integral of the curvature has a simple form, which depends only on the slope of
the surface at the two ends of the range of integration. It is independent of the shape of
the interface in between the two ends. The average value of the r/r from the center of a
beta lamella to the center of an alpha lamella due to curvature is:

r

r

D E
¼ 1

S

Z0

�Sb=2

rbL

rðxÞ dx þ
Z Sa=2

0

raL

rðxÞ dx

2
64

3
75 ¼ 1

S
raL sin ha þ rbL sin hb

h i
ð27:4Þ

Equilibration of the angles between the boundaries that meet where the phase bound-
ary intersects the interface is illustrated in Fig. 27.13.

The balance of forces giving the equilibrium configuration is:

raL sin ha þ rbL sin hb ¼ rab ð27:5Þ

Combining Eq. 27.4 and 27.5, the average of the local undercooling across the interface
due to the curvature of the interface is:

r

r

D E
¼

rab

S
ð27:6Þ

The total undercooling due to curvature of the interface has the simple form:

L�Tr

TM

¼
rab

S
ð27:7Þ

But this is exactly the total undercooling required to grow the phase boundaries into
the solid, which can be demonstrated using Fig. 27.14.

In a volume V = hjl, where h, j, and l are shown in Fig. 27.14, there are n phase
boundaries, each with an area hj. The total area of interface per unit volume is
thus n/l, which is equal to 1/S, where S is the spacing between the phase bound-
aries. So the free energy required to grow phase boundaries with surface tension
rab and spaced S apart is given by:

L�T

TM

¼
rab

S
ð27:8Þ

Figure 27.13 Equilibrium boundary angles.

27.3 Analysis of Lamellar Eutectics 369369



This is identical to Eq. 27.7, which was derived by integrating total undercooling due to
curvature along the interface. The local curvature of the interface is required by the
geometry of the phase boundaries. The local undercooling at each point along the
interface, which is required by this curvature, results in a total free energy that is
exactly what is needed to incorporate the phase boundaries into the solid. This is a
rather neat result. The depth of the groove, and the curvature of the surface it pro-
duces, spreads out the free energy needed to incorporate the boundary over some
area of the interface. This also works at the groove that forms for the incorporation
of grain boundary into solids.

27.3.2

Diffusion

The alpha phase rejects B, and the beta phase rejects A. The total amount of B rejected
by the alpha phase is the rate at which volume is added to the alpha phase, vSh, times
the amount of B rejected by the alpha phase per unit volume, which from the phase
diagram, see Fig. 27.1, is (Ceut – Ca). So the total amount of B rejected is:

vSHðCeut � CaÞ ð27:9Þ

This produces a B-rich liquid ahead of the alpha phase, and an A-rich liquid ahead
of the beta phase, as illustrated in Fig. 27.15.

For steady-state growth, A and B interdiffuse in the liquid ahead of the interface. The
concentration profile at the interface depends on this interdiffusion process. This
interdiffusion process depends on the lateral flux across the plane obtained by project-
ing the phase boundary into the liquid. The total lateral flux across this plane can be
written as:

D

Z1

I

dC

dx
hdz ð27:10Þ

Figure 27.14 Dimensions of the

lamella structure.
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Here D is the diffusion coefficient and h is a length parallel to the lamella, in the y
direction, and dC/dx is the lateral concentration gradient in the liquid at the projection
of the phase boundary. This lateral concentration gradient will be largest near the
interface, and will decrease out into the liquid, extending only a distance on the order
of S into the liquid. Zener [2] (a diode structure is named after him) who did this
analysis for the growth of the lamellar phase (known as pearlite) in iron-carbon al-
loys, approximated this total flux with an average gradient DC/(S/2), which extended
a distance S into the liquid. So he wrote the total lateral flux as:

D

Z1

I

dC

dx
hdz � D�Ch

S=2
S ¼ 2Dh�C ð27:11Þ

The B component rejected by the alpha phase goes across each of the two boundaries
of the alpha phase, so half of the rejected amount given by Eq. 27.9 goes across each. At
steady state, the amount rejected must be equal the amount carried away by the lateral
diffusion flux:

1

2
vShðCeut � CaÞ ¼ 2Dh�C ð27:12Þ

The concentration of B in front of the alpha phase is thus approximately:

�C ¼ vSðCeut � CaÞ
4D

ð27:13Þ

Multiplying this by m, the slope of the liquidus line on the phase diagram, gives the
undercooling, DTC = mDC at the interface due to composition. So the total interface
undercooling is:

Figure 27.15 The interface profile is shown on the left, and the concentration

profile in the liquid just ahead of the interface is shown on the right.
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�T ¼ �TC þ�Tr ¼
mvSðCeut � CaÞ

4D
þ
rab

S

TM

L
ð27:14Þ

Here we have the same dilemma as we had with the dendrite analysis. Which spacing,
S, goes with which growth rate v? The undercooling can be the same for a large spacing
at a slow growth rate or a small spacing at a rapid growth rate. Zener [2] suggested that
the transformation would proceed as quickly as possible, so that the relationship be-
tween the growth rate and the spacing could be obtained by adjusting the spacing to
give the maximum growth rate at a given undercooling. This results in the condition:

S2v ¼ 4DrTM

LmðCeut � CaÞ
ð27:15Þ

This is usually written in terms of the lamellar spacing, k, rather that the center-to-
center distance, S, which we have been using; k = 2S.

k2v ¼ 16DrTM

LmðCeut � CaÞ
ð27:16Þ

A better analysis of the diffusion field in the liquid replaces the factor of 16 with 15.
Experimentally, it is observed that k2v is constant over a wide range of growth rates

in many eutectic alloys. However, the numerical value of the right-hand side of Eq.
27.16 does not fit very well in systems where the parameters are known. It is also
observed that it is possible to change the growth rate by about a factor of two, for
the same lamellar spacing. So the overall average spacing that is observed is believed
to be dependent on the motion of faults or defects in the lamellar structure, rather than
the maximum in the growth rate.

27.3.3

Calculation of Eutectic Interface Shape

The detailed shape of a eutectic interface for a lamellar eutectic can be calculated using
the scheme outlined above [3, 4]. A very good approximation to the composition
variation along the interface, as illustrated on the right-hand side of Fig. 27.15 can
be obtained by assuming that the interface is flat, and then solving the diffusion equa-
tion using a Fourier expansion. The undercooling is constant locally along at the inter-
face within several lamellar spacings, since thermal diffusion is so much more rapid
that compositional diffusion. The interface undercooling is taken up by the two terms,
as in Eq. 27.14, and so the difference between the total undercooling and the under-
cooling due to compositional changes is due to variations in interface curvature. Start-
ing with the groove angle at the interphase boundary, the curvature can be integrated
twice to give the interface shape. The result of such a calculation [3] is shown in
Fig. 27.16.
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27.4

Off-Composition Eutectics

The eutectic microstructure has a unique property. During solidification, the relative
volume fraction of each phase can adjust to change the overall composition of the solid.
The composition of the solid adjusts so that it is the same as the composition of the
starting liquid. A diffusion boundary layer extending a distance D/v into the liquid

Figure 27.16 Calculated interface shapes compared with experimental inter-

faces in carbon tetrabromide-hexachloroethane.

Figure 27.17 Visualization

of a eutectic phase diagram in

carbon tetrabromide-hexa-

chloroethane.
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forms at the interface, so that the interface composition is close to the eutectic com-
position. The growth proceeds at approximately the eutectic temperature. This is illu-
strated in Fig. 27.17, which is a photograph of a sample in which the composition
varies laterally and there is a temperature gradient in the vertical direction. The sam-
ple was grown up to where the lamellae stop, and then was allowed to sit in the tem-
perature gradient, so that the two primary phases grew up to the local liquidus tem-
perature.

The relative widths of each of the two solid phases in the lamellar region changes
across the photograph, which corresponds the lateral variation in composition. The
position of the eutectic growth front, where the lamellae end, varies slightly across
the photograph, which indicates that the growth temperature is relatively independent
of the composition.

27.5

Coupled Growth

There is limited range of compositions and growth rates where the two phases of the
eutectic can grow in a coupled manner [5]. Figure 27.18 shows schematically the
growth rate for the eutectic, and for dendrites of the alpha and beta phases for a Class
I eutectic.

The eutectic grows faster than the dendrites because the distance that the species
diffuse is the lamellar spacing, usually a few micrometers at laboratory growth rates, as
compared to a diffusion length of one hundred micrometers or so for a dendrite grow-
ing at the same undercooling. The growth rates into a liquid alloy that is richer in the A
component than the eutectic composition are shown in Fig. 27.19.

For an A-rich liquid, the melting point for the alpha phase is raised, and the melting
point for the beta phase is lowered. The alpha phase can grow at a temperature above
the eutectic temperature, where neither the eutectic nor the beta phase can grow, and

Figure 27.18 Growth rates at

the eutectic composition for

the eutectic, and for dendrites

of the alpha and beta phases.
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so there is a region where the dendrites of the alpha phase will grow ahead of the
eutectic, as illustrated in Fig. 27.20.

In the phase diagram shown in Fig. 27.21, the region in which the eutectic grows
faster than the dendrites is outlined. In this region, only the eutectic grows. Outside
this region, dendrites of one of the primary phases will grow ahead of the eutectic, in
which case the microstructure includes regions of the primary phase, intermixed with
the lamellar structure.

For a Class II eutectic, one of the phases grows much more slowly than the other, as
illustrated in Fig. 27.22.

Figure 27.19 Growth rates

for the eutectic, and for

dendrites of the alpha and

beta phases into an A-rich

liquid.

Figure 27.20 Dendrites growing ahead of the

eutectic growth front in an off-eutectic-composition

carbon tetrabromide-hexachloroethane alloy.
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Here it is assumed that the alpha phase has a small entropy of fusion so it grows
rapidly, and the beta phase has a large entropy of fusion, so it grows slowly. Because
one phase grows rapidly and the other grows slowly, the eutectic, which involves the
growth of both phases, has an intermediate growth rate, which lies between the growth
rates of the two primary phases. At the eutectic composition, dendrites of the rapidly
growing alpha phase will grow out into the liquid ahead of the coupled eutectic.

A coupled eutectic will grow only into B-rich liquid, in the region where the eutectic
grows faster than either the alpha or beta phases, as illustrated in Fig. 27.23.

Figure 27.21 The eutectic grows preferentially

in the region outlined on the phase diagram.

Figure 27.22 Growth rates at the eutectic composition for the coupled eutectic,

for dendrites of the alpha and for primary crystals of the beta phase, in a Class II eutectic.
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At small undercoolings, primary crystals of the beta phase can grow into the B-rich
liquid at temperatures above the eutectic temperature, so there is a temperature inter-
val where it is the only phase that can grow. At larger undercoolings, below the eutectic
temperature, the coupled eutectic grows most rapidly, and at even greater undercool-
ing, dendrites of the alpha phase grows fastest. The region of eutectic growth for this
case is sketched in Fig. 27.24. For finite undercoolings, it does not include the eutectic
composition.

Diagrams such as these were first constructed by Tamman and Botschwar [6, 7], and
are discussed in detail by Kofler [8] who also devised a scheme for identifying organic
compounds based on their eutectic temperatures with a few solvents. Tamman and

Figure 27.23 Growth rates for the

eutectic, and for dendrites of the

alpha and beta phases in a B-rich

liquid, for a Class II eutectic where

beta is the slow-growing phase.

Figure 27.24 The Class II eutectic grows

preferentially only in the region outlined on

the phase diagram.

27.5 Coupled Growth 377377



Botschwar measured the crystallization rate of many organic compounds, and also
determined the region of coupled growth for the eutectics. The compounds that
they studied crystallized with faceted interfaces, and their growth rates were suffi-
ciently slow that they could be readily measured as a function of composition and
undercooling. All of these eutectic systems were in class III. Their detailed analysis
of the region of coupled growth takes into account the change in growth rate of one
phase in the vicinity of the other phase due to the change in composition of the liquid
there.

27.6

Third-Component Elements

As can be seen in Fig. 27.17, the lamellar eutectic can accommodate a range composi-
tions by adjusting the relative widths of the two phases. This is not true for a third
component that is rejected by both primary phases. In this case, the eutectic can
grow as a cellular structure superimposed on the lamellar structure, as in Fig. 27.25.

The lamellae tend to grow normal to the growth front, resulting in the lamellar
pattern shown. For larger concentrations of a third component, the structure can be-
come dendritic. The resulting regions where the lamellae have grown in a correlated
fashion, as in one of the cells in Fig. 27.24, are known as eutectic colonies.

Figure 27.25 Cellular growth of lamellar

a camphor-succinonitrile eutectic, with an

unknown impurity.
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Problems

1. Discuss the conditions under which dendrites grow ahead of a eutectic growth
front.

2. The diffusion distance at a growth front is given by the diffusivity divided by the
growth rate. What is the thermal diffusion distance for a eutectic alloy growing at
1 mm/min, with a thermal diffusivity of 10�5 m2 s�1. What does this imply about
temperature differences over a lamellar spacing at the growth front, which are
typically a few micrometers?
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Chapter 28

Castings

28.1

Grain Structure of Castings

The grain structure of a typical casting [1] is illustrated in Fig. 28.1.
There is a region of fine grains at the surface of the mold, which is called the chill

zone. This forms when the hot liquid first comes into contact with the cold mold. The
extent of the chill zone depends on the temperature of the liquid, on the temperature of
the mold, and on the thermal properties of the two. In some cases, the chill zone can be
quite extensive. In other cases, the hot liquid can remelt the first crystals to form, so
there is no chill zone in the final structure of the casting.

Dendrites then grow inwards from the chill zone or from the wall of the casting,
making grains that are elongated in the direction of heat flow. This is called the co-
lumnar region, because of the elongated grains. There is a competition for growing
space in this region, and the grains that are oriented so that their dendrites grow
straight in from the wall win the competition. And so the grains in the columnar
region have a preferred orientation texture such that they tend to have the dendrite
growth direction along their axes.

Kinetic Processes. Kenneth A. Jackson
Copyright ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30694-3

Figure 28.1 Typical grain structure of a casting. (From Hensel [2]).

381381



The third zone is called the equiaxed zone, because it consists of grains that have
roughly the same length in each direction, and they are randomly oriented.

For many years, the origin of the grains in the equiaxed zone was a mystery. The
undercooling in the center of the casting is limited to constitutional supercooling,
which is not sufficient for homogeneous nucleation, or even for heterogeneous nu-
cleation in the absence of nucleating agents. The equiaxed zone forms because the
dendritic structure in an alloy can come apart due to temperature fluctuations [3].

28.2

Dendrite Remelting

During dendritic growth of an alloy, the main stem of the dendrite creates a layer
around it that is enriched in the second component. The side branches of the dendrite
must grow through this enriched layer. As a result, the side branch is richer in the
second component close to the main stem, where it grows through this layer. After
it grows through the layer, the dendrite grows more rapidly into undisturbed liquid,
and it contains less of the second component. As illustrated in Fig 28.2, the dendrites
have narrow necks where they join the main stem, and the second component is more
concentrated in the neck.

Later in the growth process, the structure coarsens, and these enriched regions can
remelt, so that the arms become detached from the main stem of the dendrite, as
illustrated in Fig. 28.3.

The arms can also become detached if there is a temperature fluctuation. This is
illustrated in Fig. 28.4 where a dendrite was first grown slowly, then more quickly
by lowering the temperature, and then finally returned to the original slow growth rate.

Figure 28.2 Dendrite growing in an alloy. The gray scale in the photograph

depends on the concentration of the second component.
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The dendrite structure was much finer where the growth was more rapid. The fine
structure coarsened quickly, and many of the dendrite side branches in this region are
detached from the main stem. This process provides many detached crystals, and these
crystals are carried by convection currents to the central region of the casting, where
they grow into the equiaxed grains.

The process by which this happens is illustrated in Fig. 28.5, which shows three
stages in the solidification of an ammonium chloride – water casting.

Figure 28.3 During coarsening, the arms can become detached from

the main stem of the dendrite.

Figure 28.4 Dendrite grown slowly, then rapidly, then slowly again.
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The dark line that moves inwards progressively from the wall is the eutectic growth
front. The dendritic region inside this dark line is partly liquid and partly solid, and this
dark line is the front where the remaining liquid freezes as a eutectic, as in Fig. 27.20.

In the modeling of castings [4], the regions that are partly liquid and partly solid are
called mushy zones, a term that completely ignores the beautifully complex dendrite
structure that is there.

Figure 28.5 Ammonium chloride dendrites

growing in a water solution in a 2”� 2”� 1/4” cell.

a) Dendrites grow in from the wall in the columnar

region.

b) Detached arms from the dendrites are carried

into the center of the casting by convection cur-

rents, where they grow dendritically into equiaxed

grains.

c) The equiaxed grains fall and collect in the bot-

tom open space in the center of the mold.

a

b

c
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The blades for gas-turbine engines are made from nickel-based superalloys, which
have excellent high-temperature creep resistance as well as a reasonable ductility.
These turbine blades are made by directional cooling of the casting, so that the whole
structure is in the columnar growth region. The mold structure is usually designed so
that only one dendrite grows up through the casting. These are termed single-crystal
blades, even though they contain many small-angle boundaries where the dendrite
branches meet as the interdendritic liquid finally freezes. The critical point is that
there are no lateral grain boundaries, because these provide sites for thermal cracking
and corrosion.

The final structure of a casting, including the grain size and distribution, micro-
segregation, porosity, and macro-segregation due to the convection, depend on the
configuration of the casting and how heat is extracted from the mold [5–7]. Specialized
computer programs are used to design the mold, the location of vents, and the thermal
conditions during solidification.
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1. Prepare a report on “freckles” in castings.
2. Prepare a report on macro-segregation in castings.
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